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SEPARATION AND PLJRIFICATION METHODS, 1(2), 409-475 (1972) 

THE PRINCIPLES AND PRACTICE OF GAS-SOLID 
CHROMATOGRAPHY WITH SALT-MODIFIED ADSORBENTS 

JUDY P . OKAMURA AND DONALD T. SAWYER 
Department of Chemistry 
U n i v e r s i t y  of Cal i f  o r n i a  

Rivers ide,  C a l i f o r n i a  92502 

INTRODUCTION 

Although t h e  concept and p r a c t i c e  of gas-so l id  
chromatography preda tes  t h e  f i r s t  d e s c r i p t i o n  of gas- 
l i q u i d  chromatography' i n  1952 by s e v e r a l  years ,  it has 

not  enjoyed comparable p o p u l a r i t y .  The subject of gas- 
s o l i d  chromatography was a s i g n i f i c a n t  p a r t  of a Fara- 

2 -4 day Socie ty  meeting on chromatography i n  1949. HOW- 

ever,  t h e  p r a c t i c a l  u s e  of gas-so l id  chromatography 
through t h e  1950's  was l i m i t e d  mainly t o  t h e  s e p a r a t i o n  
of low-boiling gases  whose s e p a r a t i o n s  w e r e  n o t  e a s i l y  
accomplished by gas- l iquid chromatography. 5 

I n  t h e  mid-1960's i n t e r e s t  i n  gas-sol id  chromato- 
graphy was revived.  The advent  of t h e  flame i o n i z a t i o n  

d e t e c t o r  and t h e  work of S c o t t  and with 
salt-modif i e d  adsorbents  i l l u s t r a t e d  t h a t  f o r  s u f f i c i -  
e n t l y  small  sample s i z e s  t h e  p a r t i t i o n i n g  process  occurs  
on t h e  l i n e a r  p o r t i o n  of t h e  adsorp t ion  isotherm, and 
thereby g i v e s  symmetrical e l u t i o n  peaks.  I t  had long 
been recognized t h a t  i f  t h e  problem of nonsymmetrical 
peaks could b e  overcome s e v e r a l  advantages of gas-so l id  
chromatography could be r e a l i z e d .  These inc lude  a )  

higher  column e f f i c i e n c i e s  because of t h e  absence of a 
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OKAMUILA AND SAWYER 

l i q u i d - p h a s e  c o n t r i b u t i o n  t o  band-spread ing:  b )  h igh  
column t empera tu re  l i m i t s :  c )  s t a b l e  s u r f a c e s  which do  
n o t  undergo o x i d a t i o n  or o t h e r  chemical  r e a c t i o n s ;  d )  
s e l e c t i v e  s e p a r a t i o n s :  and e) absence  of t h e  "b leed ing"  
problem t h a t  occurs w i t h  l i q u i d  p h a s e s  t o  c a u s e  contami-  
n a t i o n  and background n o i s e  f o r  t h e  more s e n s i t i v e  de-  
t e c t o r s .  

d e t e c t o r  i n  g a s - s o l i d  chromatography.'  
sample s izes  r e q u i r e d  b y  t h e  ka tha romete r  d e t e c t o r  l i e  
on t h e  non- l inea r  r e g i o n  of t h e  a d s o r p t i o n  i so the rm and 
r e s u l t  i n  skewed peak shapes ,  w h i l e  t h e  s m a l l e r  sample 
s i z e s  r e q u i r e d  b y  t h e  a rgon  d e t e c t o r  l i e  on t h e  l i n e a r  
r e g i o n  and give good g a u s s i a n  peak s h a p e s .  

f o r  s o l i d  a d s o r b e n t s ,  s a l t  m o d i f i c a t i o n  a l l o w s  a l a r g e  
v a r i e t y  of a d s o r b e n t s  t o  be p r e p a r e d  by  t h e  u s e  of  

F i g u r e  1 i l l u s t r a t e s  t h e  importance of a s e n s i t i v e  
The l a r g e r  

I n  a d d i t i o n  t o  e x t e n d i n g  t h e  l i n e a r  i so the rm r e g i o n  

+TIME 

FIGURE 1 

Peak shapes  f o r  e l u t i o n  of  cyc lohexane  from alumina 
modif ied w i t h  NaOH, a t  291 %. Sample s i z e s  c o n s i s t e n t  
w i t h  s e n s i t i v i t y  of a rgon  d e t e c t o r  (- ) and k a t h a r o -  
meter d e t e c t o r  (-----) . 
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GAS-SOLID CHROMATOGRAPHY 

d i f f e r e n t  modifying sa l t s .  Changing t h e  m o d i f i e r  s a l t  
o f t e n  r e s u l t s  i n  l a r g e  changes i n  t h e  s e p a r a t i o n  cha rac -  
t e r i s t ics  o f  an  a d s o r b e n t .  F i g u r e  2 i l l u s t r a t e s  an  
e a r l y  s t u d y  done by  S c o t t  and P h i l l i p s 8  which used 1 4  
a l k a l i  m e t a l  s a l t s  ( h a l i d e s  and hydrox ides )  on s i l i c a -  
a lumina.  The "Kovat" r e t e n t i o n  i n d i c e s  f o r  t h e  r e t e n -  
t i o n  of  benzene on t h e  unmodified b a s e  and t h e  d i f f e r e n t  
s a l t -mod i f i ed  columns a r e  g iven .  Note t h a t  t h e  r e t e n -  
t i o n  of  benzene can r ange  anywhere from hep tane  t o  
undecane. The u s e  of  t h e s e  s i m i l a r  s a l t s  o n l y  b e g i n s  t o  
i l l u s t r a t e  t h e  p o t e n t i a l  i n  s e l e c t i v e  s e p a r a t i o n s  which 
can be achieved  b y  s a l t - m o d i f i e d  g a s - s o l i d  chromato- 

graphy 

1100 

1050 

mo (Go 

950 

900 

850 

800 (Ca 

1 QNoF 1 1 I 

Q NOOH 

QCSCl 
QNIJCI igl 

Li No K Cs unmodifi 
hsr 

FIGURE 2 

Kovat r e t e n t i o n  i n d i c e s  ( o r d i n a t e )  f o r  benzene  w i t h  
r e s p e c t  t o  v a r i o g s  m o d i f i e r s  on s i l i c a - a l u m i n a .  
t empera tu re  150 C .  I ndex  v a l u e s  f o r  E-oc tane  and 
- n-decane i n d i c a t e d  on o r d i n a t e .  
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O W R A  AND SAWYER 

TECHNIQUE OF SALT-MODIFIED GAS-SOLID CHROMATOGRAPHY 

A b a s i c  q u e s t i o n  i n  t h e  u s e  o f  s a l t - m o d i f i e d  ad- 

sorbents is what  a r e  t h e  e f f e c t s  of  t h e  amount and t h e  
k i n d  of  c o a t i n g  s a l t  upon t h e  r e t e n t i o n  o f  s o r b a t e  mole- 

c u l e s .  The answer t o  t h i s  q u e s t i o n  has  been  approached 

i n  terms of  t h e  k i n d s  o f  a d s o r p t i o n  p r o c e s s e s .  1 0  

Two types of i n t e r a c t i o n s  can occur between adso r -  
b a t e  molecules and t h e  i o n i c  s u r f a c e s  of t h e  a d s o r b e n t s  

t h a t  a r e  produced by  t h e  m o d i f i c a t i o n  p rocedure .  The 
f i r s t  of  t h e s e  is due  t o  d i s p e r s i o n  f o r c e s  and can be 

termed a n o n s p e c i f i c  i n t e r a c t i o n  .ll 
s i n g  e i t h e r  s p h e r i c a l l y  symmetr ica l  e l e c t r o n  s h e l l s  or 

sigma bonds i n t e r a c t  w i t h  t h e  a d s o r b e n t  b y  t h i s  p r o c e s s .  
The second type o f  i n t e r a c t i o n  i n v o l v e s  a d s o r b a t e  mole- 
c u l e s  having  i s o l a t e d  si tes,  i n d i v i d u a l  bonds, or a 

system of  bonds o f  h igh  e l e c t r o n  d e n s i t y .  Molecules 
w i t h  p i - e l e c t r o n  systems,  l o n e  e l e c t r o n  p a i r s ,  and re- 
l a t e d  f u n c t i o n a l  groups  can i n t e r a c t  s p e c i f i c a l l y  w i t h  

t h e  i o n i c  s u r f a c e .  

Adsorba tes  p o s s e s -  

1 2  

The v a r i a t i o n  of t h e  e n e r g e t i c s  f o r  n o n s p e c i f i c  
i n t e r a c t i o n s  w i t h  p e r c e n t  m o d i f i c a t i o n  can  be e v a l u a t e d  

T by  measuring t h e  s p e c i f i c  r e t e n t i o n  volume (&-) f o r  a 
molecule  which is subject o n l y  t o  such  i n t e r a c t i o n s .  
To de te rmine  f u n c t i o n a l  dependence of  s p e c i f i c  i n t e r a c -  
t i o n  e n e r g i e s  on s u r f a c e  m o d i f i c a t i o n  is  more d i f f i c u l t  
because  any  tes t  molecule  which i n t e r a c t s  w i t h  a s u r -  
f a c e  a l s o  i n t e r a c t s  n o n s p e c i f i c a l l y .  However, t h i s  
f u n c t i o n a l  dependence can be de termined  b y  compar ing  
t h e  b e h a v i o r  of t w o  molecules  which a r e  s i m i l a r  i n  
structure and p h y s i c a l  p r o p e r t i e s  such  t h a t  t h e y  have 
t h e  same n o n s p e c i f i c  i n t e r a c t i o n s  w i t h  t h e  s u r f a c e .  I f  
one o f  t h e  molecules  a l s o  is  subject t o  s p e c i f i c  i n t e r -  
a c t i o n s ,  t h e n  t h e  d i f f e r e n c e  i n  r e t e n t i o n  f o r  t h e  t w o  
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GAS-SOLID CHROMATOGFW'HY 

molecules  i s  a measure o f  t h e s e  s p e c i f i c  effects .  

F i g u r e  3 i l l u s t r a t e s  t h e  v a r i a t i o n  of  b o t h  types of  
i n t e r a c t i o n s  w i t h  l o a d i n g  f o r  Na2S04 and Na3P04 a t  a 
column t empera tu re  of 100°C. 

which r e p r e s e n t  t h e  l o g a r i t h m  of t h e  s p e c i f i c  r e t e n t i o n  
volume of  p e n t a n e  a s  a f u n c t i o n  o f  t h e  amount of c o a t i -  
i l l u s t r a t e s  t h e  dependence of  n o n s p e c i f i c  i n t e r a c t i o n s  

The lower se t  of  cu rves ,  

I I I 

I I I 
10 20 30 

% LOADING, W t . / W t  

FIGURE 3 
E f f e c t  of s u r f a c e  c o a t i n g  on n o n s p e c i f i c  ( lower c u r v e s )  
and s p e c i f i c  (upper  c u r v e s )  i n t e r a c t i o n s .  

0 ,  NaZSOq; 0, Na3P04. 
uncoated alumina : T (pentane), 0.26 m l / m e t e r 2  : 

S p e c i f i c  r e t e n t i o n  volumes f o r  

-0 - 
T 0.56 m l / m e t e r  2 . l o g  [ R  /R ] = 
- s (pentene-1) '  - -  

Q- T T T 
l o g  [v-s - (pentene-l1y-S (pen tane )  1 - log '1-s (pentene- l /  

T -- 
1-s (pentane)  1 * 

V- 
-S -0 

Q- 
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OKAMURA AND SAWYER 

on t h e  deg ree  o f  m o d i f i c a t i o n .  The upper c u r v e s  p r e -  

l o g  [I - (pentene- l ) /xs  'Tpentane) ] a s  a-f u n c t i o n  of t h e  

amount o f  l oad ing :  V 3 r e p r e s e n t s  t h e  s p e c i f i c  r e t e n -  

t i o n  volume on uncoatzd alumina.  The d a t a  i n d i c a t e  t h e  

v a r i a t i o n  of  s p e c i f i c  i n t e r a c t i o n  e n e r g i e s  w i t h  d e g r e e  
of  m o d i f i c a t i o n  r e l a t i v e  t o  t h o s e  f o r  a column w i t h  
ze ro  l o a d i n g .  The assumpt ion  has  been made t h a t  t h e  

l o g a r i t h m i c  terms a r e  f u n c t i o n s  o n l y  of  t h e  s p e c i f i c  

i n t e r a c t i o n  of a p i  bond w i t h  t h e  s u r f a c e ,  L.s., t h a t  
t h e  n o n s p e c i f i c  i n t e r a c t i o n s  of  pentene-1  and p e n t a n e  
wi th  t h e  s u r f a c e  a r e  t h e  same and c a n c e l  i n  t h e  expres- 
s i o n .  F i g u r e  3 i n d i c a t e s  t h a t  b o t h  s p e c i f i c  and nonspe- 
c i f  ic  i n t e r a c t i o n s  become e s s e n t i a l l y  independent  of 
amount of  c o a t i n g  above loo/, b y  weight .  The r e l a t i v e  
change w i t h  amount of c o a t i n g  €o r  t h e  n o n s p e c i f i c  i n t e r - -  
a c t i o n s  i s  much g r e a t e r  than  t h a t  €o r  t h e  s p e c i f i c  
i n t e r a c t i o n s .  Thus, s u r f a c e  modif i c a t i o n  appea r s  t o  
b lock  t h e  h i g h  energy  n o n s p e c i f i c  s i t e s  (such a s  c a p i l -  
l a r i e s )  r a t h e r  t han  t o  a l t e r  t h e  e n e r g e t i c s  of t h e  

s p e c i f i c  s i t e s  on t h e  s u r f a c e .  

s e n t  t h e  v a l u e s  o f  l o g  [V r(pentene-l)/ls-(pentane) T ] - -6 T 

32 
-s - 
-0 

The n a t u r e  o f  t h e  s p e c i f i c  i n t e r a c t i o n s  is i l l u s -  
t r a t e d  by  some of t h e  s e l e c t i v e  s e p a r a t i o n s  which have 
been achieved  .12 Comparison of compounds w i t h  s i m i l a r  
s t r u c t u r e s  a l l o w s  i s o l a t i o n  and e v a l u a t i o n  o f  s p e c i f i c  
molecular  f e a t u r e s  which i n f l u e n c e  r e t e n t i o n .  

The r e t e n t i o n  volumes of s e v e r a l  c l o s e l y  b o i l i n g  
groups of compounds w i t h  d i f f e r e n t  deg rees  of  p o l a r i t y  

a r e  l i s t e d  i n  Tab le  I. I f  d i p o l e - d i p o l e  i n t e r a c t i o n  
between t h e  a d s o r b e n t  and t h e  a d s o r b a t e  w e r e  t h e  main 
c o n t r i b u t i o n  t o  r e t e n t i o n  of p o l a r  compounds, t h e n  t h e  
more p o l a r  compound w i t h i n  t h e  groups shou ld  be e l u t e d  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
2
6
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



GAS-SOLID CHROMATOGRAPHY 

TABLE I 

E f f e c t  of D ipo le  Moment upon R e t e n t i o n  Volumes 

Compound 

A. Ethylbenzene  
Chlorobenzene 

B .  Cumene 
Bromoben Zen e 

C .  o -Chloro to luene  

m-Chlorotoluene 
p-C  h l o r o t o l  uen e 

f o r  Compounds of  S i m i l a r  B o i l i n g  P o i n t  

C o l u m n :  F-1 alumina c o a t e d  w i t h  10% NaC1, 250° C 

B o i l i n g  Dipo le  Molar 

Debye V m l  cm3/mo1 
p o i n t ,  moment, r e f r a c t i o n  

OC % 
132 0.6 52.8 36.2 
136 1 . 7  38.8 31.2 

152 0 .8  72.1 40.5 

155  1 , 7  59.4 34.1 

159  1 .9  79.5 35.8 

1 6 1  1.8 72.4 36.2 

159  1.9 79.5 36.2 

l a s t .  However, ch lo robenzene  is e l u t e d  b e f o r e  e t h y l -  
benzene$ and bromobenzene is  e l u t e d  b e f o r e  cumene, b o t h  
c a s e s  b e i n g  i n  o p p o s i t i o n  t o  p o l a r i t y  c o n s i d e r a t i o n s .  
A p o s s i b l e  e x p l a n a t i o n  f o r  t h e  longer r e t e n t i o n  of  t h e  

a l k y l - s u b s t i t u t e d  a romat i c  hydrocarbons ove r  t h e  h a l o -  
benzenes  is t h e  electron wi thdrawing  p r o p e n s i t y  shown b y  
t h e  ha logen  and t h e  concomi tan t  loss i n  electron d e n s i t y  
i n  t h e  a r y l  r i n g .  T h i s  would c a u s e  a dec reased  i n t e r -  
a c t i o n  between t h e  a d s o r b a t e  and a d s o r b e n t  and be r e f k  
t e d  b y  dec reased  r e t e n t i o n  volumes. Another f a c t o r  may 
be t h e  p o l a r i z a b i l i t y  of t h e  molecules which i s  i n d i -  
c a t e d  by  t h e i r  molar  r e f r a c t i o n .  Values  o f  t h e  l a t t e r  
a r e  t a b u l a t e d  i n  Tab le  I and, w i t h i n  t h e  f i r s t  t w o  
groups ,  g i v e  a f a i r  c o r r e l a t i o n  w i t h  r e t e n t i o n  volume. 
I n  c o n t r a s t ,  t h e  r e t e n t i o n  volumes of t h e  c h l o r o t o l u e n e s  

f o l l o w  c l o s e l y  t h e  o r d e r  of t h e i r  p o l a r i t y  (Table  I ) .  
The d i f f e r e n c e  be tween t h e  a r y l  h a l i d e s  and t h e  c h l o r o -  
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OKAMURA AND SAWYER 

t o l u e n e s  can  be r a t i o n a l i z e d  on t h e  b a s i s  t h a t  each  i s o -  

m e r  of t h e  l a t t e r  h a s  approximate ly  t h e  same r i n g  elec- 
t r o n  d e n s i t y  ( n e g l e c t i n g ,  a s  a f i r s t  approximat ion ,  t h e  

e f f e c t  of d i f f e r i n g  p o s i t i o n  of r i n g  s u b s t i t u t i o n ) ,  

because  each  h a s  i d e n t i c a l  s u b s t i t u e n t s .  Hence, o n l y  

p o l a r i t y  d i f f e r e n c e s  c o n t r i b u t e  t o  t h e i r  r e l a t i v e  r e t e n -  
t i o n .  

The r e t e n t i o n  volumes o f  s e v e r a l  c l o s e l y - b o i l i n g  

l i n e a r  and c y c l i c  s ix-carbon hydrocarbons a r e  t a b u l a t e d  

i n  Tab le  11, and i n d i c a t e  t h e  e f f e c t  of  p i - e l e c t r o n s  and 

s t r u c t u r e  on r e t e n t i o n .  These  compounds have been 

chosen on t h e  assumpt ion  t h a t  t h e i r  s i m i l a r i t y  i n  
b o i l i n g  p o i n t  r e f l e c t s  a s i m i l a r i t y  i n  deg ree  o f  non- 
s p e c i f i c  a d s o r p t i o n .  

TABLE I1 

E f f e c t  o f  P i  E l e c t r o n s  and S t r u c t u r e  upon R e t e n t i o n  
Volumes for  Compounds of S i m i l a r  B o i l i n g  P o i n t  

Column: F-1 alumina c o a t e d  w i t h  10% NaC1. 250° C 
B o i l i n g  

C omp o un d p o i n t ,  Oc !!R, m l  - 
A.  Hexane 69  7 -89  

Hexene-1 63.5 10.2 

cis-Hexene-2 69  10.4 
t r a n  s-Hexene-2 6 8  9.20 

1,4-Hexadiene 65  11 .5  

B .  Cyclohexane 

Cyclohexene 
l13-Cyclohexad iene 
1,4-Cyclohexadiene 

Benzene 

81 7 .78  

83 10 .5  

80.5 14 .O 

86.5 15.4 

80 1 7  .O 
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GAS-SOLID CHROMATOGRAPHY 

PRINCIPLES OF SELECTIVE AND SPECIFIC INTERACTIONS 

Because most gas  chromatographic  s t u d i e s  a r e  re- 
p o r t e d  a t  o n l y  one  t empera tu re ,  p r e d i c t i o n s  of t h e  
s e p a r a t i o n  t h a t  w i l l  be achieved  a t  some o t h e r  tempera- 

t u r e  a r e  d i f f i c u l t .  For  t h i s  r eason  t h e  s t u d y  o f  s a l t -  
modi f ied  g a s - s o l i d  chromatography h a s  been  approached 
i n  terms o f  t h e  thermodynamics of  a d s o r p t i o n .  The 
e n t h a l p i e s  and e n t r o p i e s  o f  a d s o r p t i o n  t h u s  o b t a i n e d  
can be used t o  p r e d i c t  r e t e n t i o n  volumes and s e p a r a -  
t i o n s  a t  any  t empera tu re .  An e a r l y  s t u d y  e s t a b l i s h e d  
t h a t  t h e  e n t h a l p i e s  and e n t r o p i e s  of  a d s o r p t i o n  a r e  

10 
combina t ions  of  n o n s p e c i f i c  and s p e c i f i c  c o n t r i b u t i o n s .  

The o v e r a l l  i n t e r a c t i o n  between s o r b a t e  and a d s o r -  
b e n t  is dependent  on t h e  n a t u r e  of t h e  c o a t i n g  s a l t  and 
t h e  c o a t e d  s u b s t r a t e .  Hence, a l t e r a t i o n s  of  b o t h  s a l t  
and s u b s t r a t e  p r o v i d e  a means f o r  deve lop ing  se lec t i -  
v i t y  f o r  a g iven  sample mix tu re .  

Adsorp t ion  Thermodynamics .13 For e l u t i o n  g a s - s o l i d  
chromatography, t h e  c o r r e c t e d  r e t e n t i o n  volume, V+ 

be conve r t ed  t o  t h e  s p e c i f i c  r e t e n t i o n  volume, I;, b y  

d i v i d i n g  b y  t h e  s u r f a c e  a r e a  o f  t h e  a d s o r b e n t ,  A .  The 
c o r r e c t e d  s p e c i f i c  r e t e n t i o n  volume a t  t h e  co lumn t e m -  
p e r a t u r e  f o r  a g iven  s o r b a t e - s o r b e n t  p a i r  is e q u a l  t o  
t h e  d i s t r i b u t i o n  c o n s t a n t ,  K, 

can 

- 

where 21 is t h e  r a t i o  of  t h e e q u i l i b r i u m  s u r f a c e  concen- 

t r a t i o n  t o  t h e  gas  p h a s e  c o n c e n t r a t i o n  of  t h e  s o r b a t e  
w i t h  t h e  s u r f a c e  c o n c e n t r a t i o n  expres sed  a s  moles p e r  
square meter and t h e  g a s  phase  c o n c e n t r a t i o n  a s  moles 
p e r  m i l l i l i t e r .  I f  t h e  s u r f a c e  c o n c e n t r a t i o n  is  
expres sed  a s  moles p e r  s q u a r e  c e n t i m e t e r ,  t h e n  t h e  d i s -  
t r i b u t i o n  c o n s t a n t  is g iven  a s  21' 
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OkXMUPA AND SAWYER 

The f r e e  energy of adsorp t ion  is r e l a t e d  t o  t h e  
d i s t r i b u t i o n  c o n s t a n t  by t h e  r e l a t i o n  

-k ’ ads = RT I n  K = RT l n  vsT = -mlads. + T A S ~ ~ ~ ~  ( 2 )  

which can be rearranged t o  g i v e  t h e  s p e c i f i c  r e t e n t i o n  
volume a s  a func t ion  of t h e  en tha lpy  and entropy of ad- 
s o r p t i o n  

l o g  VsT = -bGIads/2.3RT = -&-IIads/2.3RT + hSads/2.3R (3) 

By assuming i d e a l i z e d  s tandard s t a t e s  t h e  s tandard  
s t a t e  f ree  e n e r g i e s  and e n t r o p i e s  of adsorp t ion  (eoadS 
and Noads) can be determined from t h e  gas  chromato- 
graphic  r e t e n t i o n  d a t a .  For t h e  g a s  phase,  t h e  s tandard  
s t a t e  of t h e  adsorba te  is def ined a s  a p a r t i a l  p r e s s u r e  
of one atmosphere with t h e  adsorba te  vapor behaving a s  a 
p e r f e c t  gas .  The s tandard  s t a t e  f o r  t h e  adsorbed phase 
is t h a t  suggested by de  Boer and Kruyer;’* namely, a 
two-dimensional p e r f e c t  gas a t  one atmosphere. 
t h e  mean d i s t a n c e  between adsorbed molecules is def ined 
t o  be t h e  same a s  in  t h e  three-dimensional gas phase 
s tandard s t a t e .  Thus, by so lv ing  f o r  t h e  in te rmolecular  
d i s t a n c e ,  t h e  a r e a  p e r  molecule can be evaluated a t  
s tandard condi t ions .  This l e a d s  t o  a s tandard  s t a t e  
s u r f a c e  concent ra t ion ,  so 
expression 

- 
- 

Hence, 

which is given by t h e  (s) ’ 
C o ( s )  = 4.07 x 10-’/T(moles/cm2) (4 1 

a t  t h e  column temperature,  21. 
Equation 4 g i v e s  t h e  gas phase s o r b a t e  concent ra t ion ,  

Combining Equation 1 and 

4 18 
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GAS-SOLID CHROMATOGRAPHY 

which, when combined with t h e  p e r f e c t  gas  equat ion,  
g i v e s  

RT = 4.07 x lO- 'R/K '  (6) ( e q u i l )  = (9) 

( e q u i l )  * Knowing t h e  equi l ibr ium p a r t i a l  p ressure ,  p 
of s o r b a t e  vapor i n  e q u i l i b r i u m  w i t h  t h e  sorbent  permi ts  
eva lua t ion  of t h e  d i f f e r e n t i a l  molar f r e e  energy, &O, 

f o r  t r a n s f e r  of one mole of vapor a t  one atmosphere t o  

i t s  equi l ibr ium vapor pressure ,  L?(equil). 

No = RT ln[P(equil)/ l]  = RT ln[4.07 x 10-9R/K'] (7a) 

S u b s t i t u t i o n  of Equation lb  i n t o  Equation 7a g i v e s  

ko = RT ln[4.07 x 10-5R/K]=RT ln[4.07 x 10-5R/VsT] (7b) 

S u b s t i t u t i o n  of c o n s t a n t s  and corribining of t e r m s  g i v e s  
T 

f f i o  = RT ln(4.07 x x 82.05) - RT I n  Vs 

= 1.99T ln(4.07 x 

= ffi 'ads 

x 82.05 + bads 

- 11.33T (7c) 

Fur ther  rearrangement g i v e s  a r e l a t i o n  between t h e  spe- 
c i f i c  r e t e n t i o n  volume and t h e  f r e e  energy of adsorp t ion  
a s  a func t ion  of temperature,  

l o g  VsT = [-boads/4.58] - 2.48 = -&Iads/4.58T (7d) 

T 2 wi th  t h e  s p e c i f i c  r e t e n t i o n  volume, V - i n  m l / m e t e r  

and t h e  f r e e  energy, & l a d s ,  i n  c a l o r i e s .  
YE * 

- 
A thermodynamically based r e t e n t i o n  index has been 

developed by determining t h e  e n t r o p i e s  and e n t h a l p i e s  of 

adsorp t ion  f o r  var ious  f u n c t i o n a l  groups.  
accomplish t h i s  t h e  logari thm of t h e  s p e c i f i c  r e t e n t i o n  
volume of a compound has been  d iv ided  i n t o  a d d i t i v e  
components 

13,15-19 To 
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OKAMURA AND SAWYER 

T T 
- -- - w i t h  (Log vs-)o t h e  ze ro  p o i n t  va lue ,  ( l o g  V -)c t h e  con- 

t r i b u t i o n  p e r  carbon atom, 2 t h e  number of carbon atoms, 
m I ( l o g  V -)= t h e  c o n t r i b u t i o n  p e r  TT 

t h e  TT bonds, and (109 V -)cD-subst -- - 
s u b s t i t u e n t  a t t a c h e d  t o  a benzene 

The method of  o b t a i n i n g  such 
p l o t  sT v e r s u s  carbon number f o r  

-s_ 
T 

bond, fi t h e  number of  

c o n t r i b u t i o n  of  a 

r i n g  . 
d a t a  has  been t o  f i r s t  
a series of normal a l -  

rn - 
kanes .  
t r i b u t i o n  p e r  carbon ( r e a l l y  per -CH2- g r o u p ) ,  and t h e  
i n t e r c e p t  g i v e s  t h e  z e r o  p o i n t  ( l o g  Is-) va lue .  The 
( l o g  t e r m  has  been  o b t a i n e d  from t h e  d i f f e r e n c e  i n  

log V - u n i t s  be tween a n  a l k e n e  and an  a l k a n e  w i t h  t h e  
same number of  carbon atoms. The d a t a  f o r  a r y l  s u b s t i t u -  
e n t s  r e s u l t  from t h e  d i f f e r e n c e s  i n  l o g  V - u n i t s  

between benzene and t h e  s u b s t i t u t e d  benzenes.  These 
f u n c t i o n a l  group terms have been  e v a l u a t e d  a t  t h r e e  d i f -  
f e r e n t  t empera tu res  and ana lyzed  by  Equat ion  3 t o  o b t a i n  
t h e  e n t h a l p y  and e n t r o p y  of a d s o r p t i o n  f o r  each func- 
t i o n a l  group.  An example2' of  how t h e  c o n t r i b u t i o n s  a r e  

e v a l u a t e d  a t  one t empera tu re  is i l l u s t r a t e d  by  F i g u r e  4 .  
The r e s u l t i n g  c o n t r i b u t i o n s  and t h e i r  d i f f e r e n t i a l  

e n t h a l p i e s  and e n t r o p i e s  a r e  summarized i n  Tab le  111. 

The s l o p e  of t h e  p l o t  g i v e s  (log T77A)c, t h e  con- 

T 

T 
- 
T -- 

T 
-S 

1 3  

The development of porous  g l a s s  beads  w i t h  con- 
t r o l l e d  p o r e  s i z e s  and s u r f a c e  a r e a s  has  p rov ided  a v a l -  
uab le  new s u p p o r t  for sa l t -mod i f i ed  g a s - s o l i d  chromato- 
graphy.  T h i s  t y p e  of s u p p o r t  has  been  s e l e c t e d  t o  s t u d y  
t h e  e f fec t  t h a t  d i f f e r e n t  s a l t s  have on t h e  thermodynam- 

420 
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GAS-SOLID CHROMATOGMPHY 

cu, > 
0 
0 - 

Eva 

I I 1 1 

0 $ - t B u  T 

0 I -  h e x e n e  T 

I I 
I 
I I 1 1 1 

0 2 4 6 0 
C a r b o n  N u m b e r  

FIGURE 4 

uat ion of a c i o r p t i v e  c o n t r i b u t i o n s  from 
- vs. carbon number p l o t .  

10 

T l o g  s- 

its of adsorp t ion  of s p e c i f i c   interaction^.'^ 
various forms of porous beads a v a i l a b l e ,  P o r a s i l  C 

(Waters Associates ,  Framingham, Mass .) has been used  
because i t s  s u r f a c e  a r e a  o f f e r s  a compromise i n  selecti- 
v i t y ,  opera t ing  temperature,  and a n a l y s i s  t i m e .  

Of t h e  

421 
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OKAMURA AND SAWYER 

TABLE I11 

Reten t ion  V o l u m e  I n d i c e s  and Thermodynamic Pa rame te r s  

for Var ious  F u n c t i o n a l  G r o u p s  on 10% Na2S04 Modif ied 
Acid-Washed F-1 Alumina 

0 -3.358 

C 0.298 

0.233 " t e r m  
0.182 " t r a n s  
0.274 "cis 
0.367 
0.260 

"con j 
"arom 
v-CH3 0.341 

-Et 0.628 

- i P r  0.747 
- t B u  0.942 
-CF3 -- 
-F 0.081 
-c1 0.394 

-Br 0.634 
-I 

-OCH3 -- 
-- 

-3.518 

0.268 

0.206 
0.149 
0.229 
0.307 

0.232 
0.301 

0.540 
0.649 

0.824 
-- 

0.059 
0.338 
0.555 
0.835 
-- 

-3.483 

0.239 

0.175 
0.125 
0.193 
0.262 

0.206 
0.266 

0.483 

0.583 
0.741 
-- 

0.054 
0.298 
0.598 
0.751 
-- 

-0.30 
1 .33  

1.32 
1 . 3 1  
1 .85  
2.38 
1 . 3 1  

1.70 

3.28 
3.73 

4.56 
-- 

0.60 
2.17 
3.09 
4 .OO 
-- 

15 .61  
1.44 

1 . 7 1  
1 .95  
2.66 

3.38 
1.57 

2.04 

4 .11  

4.52 
5.38 
-- 

0.94 
2 . 8 1  
3.66 
4.22 
-- 

-8.10 
0.61 

0.46 

0.33 
0.52 
0.69 
0.52 

0.68 

1 .22  
1.47 
1.87 
-- 

0.13 

0.75 
1.26 
1.89 
-- 
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GAS-SOLID CHROMATOGRAPHY 

Cons ide ra t ion  o f  t h e  d a t a  i n  Tab les  I V  and V e s t a b -  
l i s h e s  t h a t  t h e  i n o r g a n i c  s a l t s  used f o r  s a l t - c o a t i n g  
P o r a s i l  C have a s i g n i f i c a n t  e f f e c t  on t h e  v a r i o u s  spec-  
i f i c  i n t e r a c t i o n s .  
s i m i l a r l y  a t  500 OK, d i f f e r e n c e s  i n  e n t h a l p i e s  and 
e n t r o p i e s  e x i s t  a s  i n d i c a t e d  by  Tab le  V I .  

s a l t s  w i t h  t h e  excep t ion  t h a t  TT i n t e r a c t i o n s  a r e  en-  
hanced s l i g h t l y  w i t h  Na2MoOq and even more w i t h  Na3P04. 
The n a t u r e  o f  t h e  a n i o n i c  p o r t i o n  of  t h e  s a l t  does  n o t  
seem t o  have a major  e f f e c t  on i t s  a d s o r p t i v e  p r o p e r -  
ties. 

Although Na2S04, NaC1, and L i B r  a c t  

Na3P04 and Na2Mo04 a r e  s i m i l a r  t o  t h e  o t h e r  Group I 

Both CoS04 and NiS04 behave  s i m i l a r l y ,  b u t  t h e  
p r o p e r t i e s  o f  10% N i S 0 4  on P o r a s i l  C change w i t h  t i m e  
such  t h a t  t h e  column i s  i m p r a c t i c a l  and compar isons  a r e  
meaningless .  The CH and cp-Alk f r e e  ene rgy  c o n t r i b u t i o n s  
f o r  CoS04 a t  500 OK are  enhanced compared w i t h  Group I 

s a l t s .  Al though o l e f i n i c  compounds a r e  n o t  e l u t e d  from 
CoS04 modi f ied  P o r a s i l  C ,  t h e  naromatic f r e e  ene rgy  

c o n t r i b u t i o n  a t  500 OK is comparable  t o  t h a t  on Na3P04. 
However, t h e  e n t h a l p y  and e n t r o p y  c o n t r i b u t i o n s  f o r  

e l e c t r o n s  a r e  much g r e a t e r  on CoS04. The "aromatic  
change i n  thermodynamic p a r a m e t e r s  p e r  ha logen  is 
g r e a t e r  on CoS04 t h a n  on Group I s a l t s .  

When A 1 2 ( S 0 4 ) 3  and Cr (S04)3  a r e  used a s  c o a t i n g  
s a l t s ,  o l e f i n i c  compounds are n o t  e l u t e d  from e i t h e r  
column. A l k y l - s u b s t i t u t e d  benzenes  a r e  n o t  e l u t e d  from 

C r 2  (SO4) 3, b u t  w i t h  A12 (SO4) 

Group I s a l t s  e x c e p t  t h a t  2 -buty lbenzene  is n o t  e l u t e d .  
The CH f r e e  ene rgy  c o n t r i b u t i o n  a t  500 K is s imi l a r  on 
A12(S0413 and Group I s a l t s ,  b u t  is t h e  l a r g e s t  of  any 
s a l t  examined on Cr2 (S04)3 .  

t h e y  i n t e r a c t  s i m i l a r l y  t o  

0 

The Q-X free ene rgy  c o n t r i -  
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GAS-SOLID CHROMATOGRAPHY 

TABLE VI 

Comparison of  Coa t ing  S a l t s  on 

E n t h a l p i e s  and En t rop ie s  of Adsorp t ion  

C o n t r i b u t i o n  

cH 

t e r m  
r r c i s - t r a n s  

'con j 

rrarom 

TI  

rp-Alk 

ep-X 

Magnitude of 
b(-AEI) - and P(-LY-) 

LiBr < NaCl < Na2SO4 

L i B r  < NaCl = Na2S04 

Na2S04 < L i B r  < NaCl 

Na2S04 < L i B r  < NaCl 

L i B r  < Na2S04 < NaCl 

Na2S04 = NaCl = L i B r  

NaCl < Na2S04 < L i B r  

co-OMe Na2S04 < NaCl < L i B r  

b u t i o n  is enhanced when Cr2 (S04)3  and A12(S04)3 a r e  used 

f o r  c o a t i n g :  t h e  rp-Cl, cp-Br, and cp-I e n t h a l p y  and 

e n t r o p y  c o n t r i b u t i o n s  on C r 2  (SO4) 

any s a l t  s t u d i e d .  

a r e  t h e  l a r g e s t  of 

I n  g e n e r a l ,  f r e e  energy  c o n t r i b u t i o n s  a r e  i n c r e a s e d  

b y  d e c r e a s i n g  t h e  column t empera tu re .  However, b e c a u s e  

of n e g a t i v e  e n t r o p y  c o n t r i b u t i o n s ,  Q-F behaves  i n  a n  

o p p o s i t e  manner i n  a l l  c a s e s  examined. The e n t r o p y  con- 

t r i b u t i o n s  a r e  n e g a t i v e  f o r  r p C 1  w i t h  a l l  b u t  t h e  t r i v a -  

l e n t  s a l t s  and f o r  cp-Br w i t h  Group I s a l t s  on ly :  cp-I 
has  n e g a t i v e  e n t r o p i e s  on NaCl and Na3P04. Compared 

w i t h  e n t h a l p y  c o n t r i b u t i o n s  ( k c a l )  , cp-X e n t r o p y  c o n t r i -  

b u t i o n s  (ca l /deg)  a r e  s m a l l e r  on a l l  s a l t s  e x c e p t  f o r  

cp-I on CoS04, A12(S04)3, and Cr2 (S04)3  and f o r  rp-C1 and 

cp-Br on Cr2(SO4I3. Fo r  most o t h e r  f u n c t i o n a l  groups  t h e  
en t ropy  c o n t r i b u t i o n  i s  l a r g e r  t han  t h e  e n t h a l p y  c o n t r i -  
b u t i o n s :  f o r  C bo th  c o n t r i b u t i o n s  a r e  s i m i l a r  i n  magni- 

t ude .  
H 
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OKAMURA AND SAWYER 

The p h y s i c a l  c h a r a c t e r i s t i c s  of t h e  v a r i o u s  unmodi- 

f i e d  and modi f ied  P o r a s i l s  a r e  summarized i n  Tab le  V I I .  

The e f f e c t  of s u r f a c e  a r e a  on t h e  a d s o r p t i v e  t h e r -  
modynamic pa rame te r s  h a s  been  de termined  by  u s e  of  a 
series o f  P o r a s i l s  modi f ied  wi th  a 10% (by we igh t )  

Na S O  c o a t i n g ;  t h e  results a r e  summarized i n  Tab les  
V I I I  and I X  ( d a t a  f o r  P o r a s i l  C are  inc luded  i n  Tab les  

X and X I  and a r e  s i m i l a r  t o  P o r a s i l  D ) .  I n  g e n e r a l ,  

i n t e r a c t i o n s  i n c r e a s e  w i t h  s u r f a c e  a r e a .  However, a t  

500 OK t h e  f r e e  energy  c o n t r i b u t i o n s  f o r  P o r a s i l  E a r e  

g r e a t e r  t han  t h o s e  f o r  P o r a s i l  D.  For  t h e  ha logena ted  

2 4  

TABLE V I I  

P h y s i c a l  C h a r a c t e r i s t i c s  of Various Modified 

and Unmodified Porous S i l i c a  Beads, 100-150 Mesh 

Column S p e c i f i c  Av .  P o r e  Opera t ing  
pack ing  s u r f a c e  diam., 8 temp., Oc 

a r e a ,  mYq 
Uncoated P o r a s i l  C - - 
S i l i z a n e d  P o r a s i l  C 62 
S i l i z a n e d  10% Na2SO4- 

P o r a s i l  C 54 

10% Na2S04-Poras il A 455 

10% Na2S04-Porasil D 33 

10% Na2S04-Poras il C 61 

10% Na2S04-Poras il E 

10% NaC1-Porasil C 

10% Na2Mo04-Porasil C 

10% Na3P04-Porasil C 

lO%LiBr-Porasil C 

10% NiS04-Porasi l  C 

10% CoS04-Porasi l  C 
10% A 1 2  (SO4) 3-Poras i l  C 

10% C r 2  (So4) 3-Poras i l  C 

1 9  

63 

60 

57 
6 2  

8 2  
70 
6 8  

67 

200-400 

200-400 

100 

200-400 

400 -80 0 

800-1500 

200-400 

2 00-4 00 

200-400 
200-400 
200 -400 

200-400 

200-400 
200-400 

125-175 

125-175 

200-250 

175-225 

150-200 

1 2  5-17 5 

175-225 

175-225 

175-225 
175-225 

175-225 

1 7  5-2 2 5 

1 7  5-2 2 5 
175-225 
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GAS-SOLID CHROMATOGRAPHY 

benzenes ( c p - X )  t h e  f r e e  ene rgy  c o n t r i b u t i o n s  a r e  a lmos t  

i d e n t i c a l  on P o r a s i l  C and D a t  500 OK; t h e  s m a l l e r  
e n t r o p y  c o n t r i b u t i o n s  on P o r a s i l  D c a u s e  l a r g e r  f r e e  

energy  c o n t r i b u t i o n s  a t  h i g h e r  t empera tu res .  For  p i  

e lectron sys tems (n), t h e  e n t r o p y  c o n t r i b u t i o n s  a r e  

much l a r g e r  on P o r a s i l  A and D t h a n  on P o r a s i l  C and E.  

The s e l e c t i v i t y  of a s a l t - m o d i f i e d  a d s o r b e n t  is 
s t r o n g l y  dependent  upon t h e  s u p p o r t  t h a t  is t o  be modi- 

TABLE V I I I  

E f f e c t s  of  S u r f a c e  Area of  10% Na2S04-Modified 

Porous S i l i c a  Beads on F r e e  Ene rg ie s  o f  Adsorp t ion  

f o r  Var ious  F u n c t i o n a l  Groups 

500 OK, i n  K i l o c a l o r i e s ]  

X P o r a s i l  A P o r a s i l  D P o r a s i l  E 

0 

C 

“ t e r m  
“ c i s - t r a n s  

-7.63 -7.16 

0.42 0.35 
0 -44 

0.45 

0.53 

0.38 
“con j 
Tarom 
cp-CH3 0.57 

-Et  1.07 

-iPr 1.40 
- t B u  1 .78  
-CF - 
-F -0.05 

-c1 0.48 

-Br 0.85 

-I 1 .33  
-OCH3 - 

0.25 

0.26 
0.39 

0.31 
0.46 

0.84 

1 .08  

1 .37  
0.18 

-0.01 

0.38 

0.67 

1 .01  
- 

-7.64 

0.41 

0.34 

0.33 

0.42 

0.32 
0.44 

0.83 

1 .06  

1.34 

0.26 
0.03 

0.46 

0.75 

1.11 
2 .oo 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
2
6
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



OKAMURA AND SAWYER 

f i e d .  Comparisons have been made of  s e v e r a l  adso r -  
b e n t ~ ’ ~ ~ ~ ~  t h a t  have  been  c o a t e d  w i t h  Na2S04; t h e s e  in -  
c l u d e  F l o r i s  il, P o r a s i l ,  and F-1 Alumina (acid-washed 

and non-acid-washed) . 
X I  i n d i c a t e s  s e v e r a l  i n t e r e s t i n g  p o i n t s .  For  example, 
w i t h  t h e  P o r a s i l  C column t h e  carbon o f  methyl  s u b s t i -  

D e t a i l e d  c o n s i d e r a t i o n  of t h e  d a t a  i n  Tab les  X and 

TABLE I X  

E f f e c t s  of  S u r f a c e  Area of  10% Na2S04-Modified Porous 
S i l i c a  Beads on Thermodynamic Pa rame te r s  f o r  Var ious  

F u n c t i o n a l  Groups 

( E n t h a l p i e s  i n  K i l o c a l o r i e s ;  E n t r o p i e s  i n  Ent ropy  U n i t s )  

0 -0.31 

C 1 . 2 2  
1.64 ‘term 

nc is  - t $dlJ 
2.03 Tlcon j 
1 . 2 2  ‘arom 

ep-CH3 1.99 
- E t  3.45 
- iP r  4.33 
- t B u  5.26 
-CF3 - 
-F -0.56 
-c1 0.73 
-Br 1 .66  

-I 2.86 
-OCH3 - 

14.62 

1.60 
2.40 
3.23 

3.00 

1.67 

2 .82  

4.75 
5.85 
6.95 
- 

-1 .oo 
0.49 
1.62 
3.05 
- 

2.41 19.17 

0.81 0.92 
1.45 2.39 
1.90 3.26 

1.84 2.90 

1 .37  2.12 

1.86 2.80 
2.97 4.26 
3.61 5.05 
4.30 5.98 

-0.83 -2.03 
-1.39 -2.75 

-0.81 -2.40 
-0.19 -1.73 

0.64 -0.74 
- - 

P o r a s i l  E 

b ( - @ ) x  b ( - f q x  

3.27 21.84 

0.74 0.66 
1.39 2.08 
1 .75  2.82 

1 .85  2.85 

1 .25  1.86 

1 .75  2.62 
2.90 4.13 
3.67 5.21 
4 .61  6.54 

-0.40 -1.33 
-0.84 -1.76 

-0.09 -1.12 
0 .71 -0.08 
1 .69  1 .15  

6.25 8.51 
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OKAM(IRA AND SAWYER 

t u e n t s  on a romat i c  molecules has  a l a r g e r  i n t e r a c t i o n  

than  t h a t  observed  f o r  an a l i p h a t i c  ca rbon .  A s i m i l a r  

s e l e c t i v i t y  is n o t  observed  f o r  t h e  Na2S04-alumina 
carbon.  Another s u r p r i s i n g  o b s e r v a t i o n  is t h e  sma l l  

i n t e r a c t i o n  of  t h e  f l u o r i n e  s u b s t i t u e n t  w i t h  a Na2S04- 

P o r a s i l  C column r e l a t i v e  t o  t h e  Na2S04-alumina column. 

The sma l l  i n t e r a c t i o n  of a l i p h a t i c  ca rbons  on t h e  

P o r a s i l  C column r e l a t i v e  t o  t h e  alumina column p ro -  

TABLE X I  

S p e c i f i c  F r e e  Energy of  Adsorp t ion  f o r  Var ious  

F u n c t i o n a l  Groups, A ( - & ' ) x ,  a t  500 OK 

10% Na2S04- 10% Na2S04- 10% Na2S04- 10% Na2S04- 
naw F-1 aw F-1 P o r a s i l  C F l o r  is  il 

x A 1 2 0 3  

0 -7.72 

C 0.61 

0.38 ' t e r m  
0.25 " t r a n s  
0 .41  nc is 
0.44 'Tconj 
0.35 =arom 

w-CH3 0 .61 

- E t  1.20 

- i P r  1 . 5 8  

- t B u  2.02 

-CF3 0.82 

-F 0.37 

-c1 0.93 
- B r  1 .37 

-I 1.98  

-OCH3 - 

A1203 

-8.10 

0.61 

0.46 

0.33 

0.52 

0.69 

0.52 

0.68 

1 . 2 2  
1 .47 

1 .87  
- 

0.13 

0.75 
1 .26  

1.89 
- 

-7.01 

0.38 

0.26 

0.41 

0.41 

0.40 

0.26 

0.53 

0.92 

1 . 2 1  

1 .53 
0.29 

-0.04 

0.39 
0.66 
1 .01  

2.03 

-7.96 

0.76 

0.51 

0.51 

0.51 

0.47 

1 . 1 7  
1 .90  

2.37 
- 

0.12 

0.63 

1 .ll 
1.74  
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GAS-SOLID CHROMATOGRAPHY 

v i d e s  an enhancement of  t h e  spec i f ic  e f f e c t s  due  t o  
pi-bond i n t e r a c t i o n s  and a l l o w s  more s e l e c t i v e  r e s o l u -  
t i o n  of such  s p e c i f i c  i n t e r a c t i n g  s o r b a t e s .  I n  v iew of  
t h i s  enhancement,  t h e  i n a b i l i t y  t o  r e s o l v e  c i s - t r a n s  
i somers  on t h e  Na2S04-Porasil  C column is s u r p r i s i n g .  
T h i s  may be due t o  t h e  p a r t i c u l a r  pore s i z e  d i s t r i b u -  
t i o n  of  t h i s  m a t e r i a l ,  o r  it may be due  t o  spec i f ic  
s u r f a c e  e f f e c t s  t h a t  a r e  d i f f e r e n t  between s i l i c a  and 
a lumina .  

An impor t an t  o b s e r v a t i o n  is t h e  e f f e c t  t h a t  

r e s u l t s  from a c i d  washing t h e  alumina p r i o r  t o  c o a t i n g  
it w i t h  t h e  i n o r g a n i c  s a l t .  Such t r e a t m e n t  d o e s  n o t  
s i g n i f i c a n t l y  i n c r e a s e  t h e  i n t e r a c t i o n  o f  a l i p h a t i c  
ca rbons ,  b u t  it does  b r i n g  a b o u t  an i n c r e a s e  of  0 .1  t o  
0.2 k c a l  i n  t h e  s p e c i f i c  i n t e r a c t i o n s  due  t o  p i -  

e l e c t r o n  sys t ems .  Acid washing a l s o  c a u s e s  a d e c r e a s e  
i n  t h e  i n t e r a c t i o n s  due  t o  a r o m a t i c  s u b s t i t u e n t s .  

T h i s  l a t t e r  o b s e r v a t i o n  may be d e c e p t i v e :  t h e  r e a l  
e f f e c t  may be t h a t  t h e  enhanced pi-electron i n t e r a c t i o n  

a m p l i f i e s  s u b s t i t u e n t  e f f e c t s  t h a t  a r e  r e l a t e d  t o  elec- 
t r o n  wi thd rawa l .  2 1  

S e v e r a l  t r e n d s  a r e  observed  f o r  t h e  f u n c t i o n a l  
group f r e e  e n e r g i e s  i n  T a b l e  X I .  F i r s t ,  b o t h  types of 
alumina s e p a r a t e  c i s - t r a n s  o l e f  i n  i somers ,  w h i l e  
n e i t h e r  P o r a s i l  n o r  F l o r i s i l  i n d i c a t e  any  d i f f e r e n t i a -  
t i o n .  w i th  columns modi f ied  b y  10% NaC1, t h e  d i f f e r e n -  
t i a l  i n t e r a c t i o n s  for a l i p h a t i c  ca rbons  and p i - e l e c t r o n  
bonding  sys tems f o l l o w  t h e  series P o r a s i l 4  F-1 < 
F l o r i s i l .  For  a l k y l - s u b s t i t u t e d  benzenes  t h e  o r d e r  of  
i n t e r a c t i o n s  i s  P o r a s i l  < F-l<< F l o r i s i l ;  t h e  ha logen-  

a t e d  benzenes  rollow t h e  o r d e r  P o r a s i l  << F l o r i s i l  < F-1. 
S e p a r a t i o n  of  c i s - t r a n s  i somers  o f  o l e f i n s  is  e f f e c t e d  
i n  t h e  o r d e r  F-1 >> F l o r i s i l .  
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OKAMURA AND SAWYER 

When F-1 alumina is acid-washed p r i o r  t o  mod i f i ca -  
t i o n  wi th  Na2S04 t h e  i n t e r a c t i o n s  b y  p i - e l e c t r o n  sys t ens  
a r e  eqhanced and t h e  r e s o l u t i o n  o f  c i s - t r a n s  o l e f i n s  is 
improved .12 I n t e r a c t i o n s  b y  ha lobenzenes  a r e  reduced ,  
b u t  acid-washing has  no  e f f e c t  on a l i p h a t i c  carbon and 
a l k y l  benzene i n t e r a c t i o n s .  

Because b o t h  t h e  s a l t  c o a t i n g  and t h e  unde r ly ing  
surfaces  a r e  involved  i n  t h e  a d s o r p t i o n  o f  a compound, 
a series of coa ted  and uncoated P o r a s i l  C columns have 
been used t o  s e p a r a t e  and s t u d y  t h e  two e f f e c t s .  
Tab le s  XI1 and XI11 summarize t h e  v a r i a t i o n s  of t h e  
thermodynamic pa rame te r s  f o r  porous  s i l i c a  caused  b y  
add ing  a s a l t  c o a t i n g  and by  s i l i z a n i n g  t h e  s u r f a c e .  
Coa t ing  P o r a s i l  C w i t h  10% Na2S04 i n c r e a s e s  t h e  a l i p h a -  
t i c  carbon (CH), 7,  and U-X f r e e  energy  c o n t r i b u t i o n s .  
In  c o n t r a s t ,  s i l i z a n i n g  d e c r e a s e s  t h e  CH, TI, and a ro -  
ma t i c  a l k y l  s u b s t i t u e n t  (rp-Alk) f r e e  ene rgy  c o n t r i b u -  
t i o n s  w h i l e  i n c r e a s i n g  t h e  rp-X c o n t r i b u t i o n s .  These 
changes i n  f r e e  ene rgy  c o n t r i b u t i o n s  a r e  due  t o  
i n c r e a s e s  i n  CH, rp-Alk, and cp-X e n t h a l p y  c o n t r i b u t i o n s  
and t o  l a r g e  i n c r e a s e s  i n  t h e  cp-Alk e n t r o p y  c o n t r i b u -  
t i o n s .  The change i n  e n t r o p y  c o n t r i b u t i o n  p e r  halogen 
is  i n c r e a s e d  b y  s i l i z a n i n g .  

Combination of s i l i z a n i n g  and a Na2S04 c o a t i n g  h a s  
a n e g l i g i b l e  e f f e c t  on t h e  U-Alk e n t h a l p y  c o n t r i b u t i o n s  
b u t  i n c r e a s e s  t h e  e n t h a l p y  c o n t r i b u t i o n s  f o r  CH, TT, and 
rp-X. The e n t r o p y  c o n t r i b u t i o n s  f o r  cp-Alk, rp-X, and a l i -  
p h a t i c  TT e l e c t r o n  sys tems a l s o  a r e  i n c r e a s e d .  The re- 
d u c t i o n  of t h e  f r e e  ene rgy  c o n t r i b u t i o n s  f o r  TI elec- 
t r o n s  w i t h  s i l i z a n i n g  s u p p o r t s  t h e  t h e o r y  t h a t  n 
systems i n t e r a c t  w i t h  s u r f a c e  hydroxyl  groups  b e c a u s e  

s i l i z a n i n g  e l i m i n a t e s  t h e  hydroxyl  bond. The effects  
of s i l i z a n i n g  and s a l t - c o a t i n g  a r e  reduced  a s  t h e  

19 
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GAS-SOLID CKROMATOGRAPHY 

0 temperature i s  lowered t o  60 C.  While inorganic  s a l t -  

coated P o r a s i l  s u r f a c e s  a r e  g e n e r a l l y  s t a b l e ,  s i l i z a n e d  

s u r f a c e s  decompose with time t o  such an e x t e n t  a s  t o  
make them imprac t ica l  f o r  most a p p l i c a t i o n s  of gas- 

s o l i d  chromatography. I n  genera l ,  reduct ion  of column 

temperature enhances t h e  f r e e  energy c o n t r i b u t i o n s  of 

v systems r e l a t i v e  t o  those  f o r  CH. 

t o  be a b l e  t o  p r e d i c t  sample s e p a r a t i o n s .  A s  an 

example, a s e t  of p r e d i c t i o n s  has b e e n  made f o r  an ac id-  

washed Na2Mo04 F-20 alumina column a t  200 OC. 
experimental  s e p a r a t i o n  of t h i s  group of compounds i s  
i l l u s t r a t e d  by Figure  5 and provides  t h e  da ta  f o r  t h e  

comparison of p r e d i c t e d  and experimental  r e t e n t i o n  

volume r a t i o s  t h a t  a r e  summarized i n  Table  X I V .  

The u l t i m a t e  u s e  of t h e  thermodynamic approach is 

The 

16 

The e f f e c t i v e n e s s  of sal t -modif ied P o r a s i l  columns 
f o r  t h e  s e p a r a t i o n  of isomeric hydrocarbon mixtures is  
i l l u s t r a t e d  by Figure  6.l’ The chromatogram f o r  t h i s  

TABLE X I V  

Comparison of P r e d i c t e d  and Experimental 

Retent ion Volumes a t  200 OC f o r  an Acid- 

Washed 10% Na2Mo04 F-20 Alumina Column 

(x (pen t a n  e 
X Predic ted  Experimental 

hexane 2 . 2 1  2.23 
t r a n s  - 2 -pent en e 1.52 1.57 
c is -2 -pen t e n e  1.84 1.92 
1 -pent ene 1.74 1.80 
1-hexene 3.84 4 .oo 
benzene 9.95 10.50 
chlorobenzene 25.68 26 -63 

to luene  27.35 27.31 
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0- AND SAWYER 

22-component mix tu re  d r a m a t i c a l l y  i l l u s t r a t e s  t h e  l a c k  
of  c o r r e l a t i o n  between b o i l i n g  p o i n t  and r e t e n t i o n  
volume. The q u a l i t y  o f  t h e  s e p a r a t i o n  is  p a r t i c u l a r l y  
impress ive  f o r  a column t h a t  i s  o n l y  3 f e e t  l ong  and f o r  
an a n a l y s i s  t i m e  of less t h a n  2 minutes .  

C e r t a i n  columns have p a r t i c u l a r l y  l a r g e  c o n t r i b u -  
t i o n s  f o r  a romat i c  methyl  and ha logen  s u b s t i t u e n t s .  
Such columns p robab ly  have  t h e  g r e a t e s t  p o t e n t i a l  f o r  
s e p a r a t i n g  t h e  isomers of  xylene and d i s u b s t i t u t e d  
ha lobenzenes .  Although a t t e m p t s  t o  r e s o l v e  t h e  xy lene  

10% No,MoO,, aw F - 20 Alumina 

A. pentane 
B. trans-2-pentene 
C. cis-2-pentene 
D. hexane 
E. trans-2-hexene 
F. 1-hexene 
C. cis-2-hexene 
H .  trans-I,4-hexadiene 
1. cis-l,4-hexadiene 
J.  benzene 
K .  2.4-hexadiene 

1. K I 

2000c 

A 

0 

c 

8 6 4 2 0 
MINUTES FROM INJECTION 

FIGURE 5 
Gas chromatogram f o r  an  eleven-component i somer i c  m i x -  
t u r e  of f i v e -  and s ix-carbon u n s a t u r a t e d  hydrocarbons 
w i t h  a 3 - f t  x 1/8 i n .  column. 
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GAS-SOLID CHROMATOGRAPHY 

10% Na3P04 - Porasil C 
13 60 O C  

14 

1. - I 
I 1 

120 100 80 60 40 20 0 

Time. sec. 

FIGURE 6 

Gas chromatogram for a 22-component hydrocarbon m i x t u r e  
w i t h  a 3 - f t  x 1/8 i n .  column. 

B o i l i n g  p o i n t s  i n d i c a t e d  i n  p a r e n t h e s e s :  Peak No .  1. 
methane (-161) ; 2. e t h a n e  (-89) ; 3. e t h y l e n e  (-104) : 4. 
propane  (-45) : 5.  a c e t y l e n e  (-84) : 6.  cyc lop ropane  (-33); 
7 .  p ropene  (-48) and b u t a n e  (-1) : 8. p r o p a d i e n e  ( a l l e n e )  
( -35 ) ;  9 .  i s o b u t a n e  ( 2 8 ) ;  1 0 .  p e n t a n e  (36)  and c y c l o -  

p e n t a n e  (49)  : 11. 1-bu tene  (-6) : 1 2 .  t r ans -2 -bu tene  (1) ; 
13. isobutylene (-7) and Q - 2 - b u t e n e  ( 4 ) ;  14 .  1 ,3-buta-  
d i e n e  (-4) : 15.  m e t h y l a c e t y l e n e  (-23) : 16. 1-pentene 
(29)  ; 1 7 .  t rans-2-pentene  (36) : 18. c i s -2 -pen tene  (38)  
and 2-methyl-1-butene (39) .  
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0KA.MURA AND SAWYER 

i somers  have been unsuccess fu l ,  t h e  s e p a r a t i o n  of t h e  
d i ch lo robenzene  isomers is accomplished w i t h  a n  ac id -  
washed, Na2Mo04-modif i e d  F-20 alumina column ( F i g u r e  7).  16 

The o r d e r  of e l u t i o n  of  t h e  d i ch lo robenzenes  can  be 

r a t i o n a l i z e d  by  n o t i n g  t h a t  t h e  i n d u c t i v e  e f f e c t  of  t h e  
e l e c t r o n e g a t i v e  ha logens  d e c r e a s e s  t h e  p i - e l e c t r o n  den- 
s i t y  of t h e  a romat i c  nuc leus  and t h e r e b y  d e c r e a s e s  t h e  
p i - e l e c t r o n  i n t e r a c t i o n .  Thus, t h e  d i ch lo robenzene  
isomers w i t h  t h e  g r e a t e r  a b i l i t y  t o  withdraw e l e c t r o n s  
from t h e  a romat i c  r i n g  shou ld  be r e t a i n e d  less s t r o n g l y .  
Because t h e  i n d u c t i v e  e f f e c t  d e c r e a s e s  w i t h  d i s t a n c e  

from t h e  s u b s t i t u e n t ,  t h e  meta and p a r a  i somers  (wi th  
more o r t h o  c e n t e r s  a v a i l a b l e )  should  be r e t a i n e d  less 

10% N ~ 2 M d ) l .  .W F-20 Alumion n S o C  
A. benzene 
9. chlorobenzene B 
C .  meta-dich lorobenzene 
D. para-dichluobenzene 
E. orthdichlorobenzene 
F. 1,2,4 trichlorobenzene 

A 

2 

12 10 8 6 4 2 0 

Minutee from injection 

FIGURE 7 

G a s  chromatogram f o r  benzene and ch lorobenzenes  w i t h  a 
3 - f t  x 1/8 i n .  column. 
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GAS - S OLID CHROMATOGRAPHY 

t han  t h e  o r t h o  i somer .  E i t h e r  a steric f a c t o r  o r  reso- 
nance  e f f e c t s  p robab ly  accoun t s  f o r  t h e  reduced  i n t e r -  
a c t i o n  of  t h e  meta isomer r e l a t i v e  t o  p a r a  d i c h l o r o -  
benzene 

Mechanisms of I n t e r a c t i o n s .  U n t i l  r e c e n t l y  a 

q u a n t i t a t i v e  r e l a t i o n s h i p  between molecular  s t r u c t u r e  
and t h e  i n t e r a c t i o n s  which have been  termed s p e c i f i c  and 
n o n s p e c i f i c  had n o t  been  i d e n t i f i e d .  

shown t h e  impor tance  of  d i s p e r s i o n  i n t e r a c t i o n s  i n  

c e r t a i n  c a s e s  and had proposed  a q u a l i t a t i v e  scheme f o r  
c l a s s i f y i n g  a d s o r b a t e  molecules  and a d s o r b e n t s  . Howeves 
King and Benson w e r e  t h e  f i r s t  t o  advance a q u a n t i t a t i v e  

t h e o r y  f o r  n o n s p e c i f i c  i n t e r a c t i o n s .  24825 T h i s  has  been  
t e s t e d  by  sa l t -modi f  i e d  g a s - s o l i d  chromatography26 and 
confirmed t o  be a u s e f u l  mo lecu la r  b a s i s  f o r  such 

K i ~ e l e v ~ ~ r  23 had 

i n t e r a c t i o n s .  

The King and Benson t h e o r y  f o r  e l e c t r o s t a t i c  

i n t e r a c t i o n s  a t  g a s - s o l i d  s u r f a c e s  24825 proposes  t h a t  
t h e  ene rgy  of  i n t e r a c t i o n ,  qatt, is g iven  by  - 

o r  
w a t t  = 4 Ez2 

where (y is t h e  p o l a r i z a b i l i t y  o f  t h e  adsorbed  molecule ,  
C t h e  s u r f a c e  cha rge ,  z t h e  d i s t a n c e  of  t h e  m o l e c u l e  -ef f 
from t h e  s u r f a c e ,  and Ez t h e  e lectr ic  f i e l d  normal t o  
t h e  s u r f a c e .  The t h e o r y  p r e d i c t s  t h a t  t h e  i n e r t  g a s e s  
and methane w i l l  i n t e r a c t  w i t h  t h e  a d s o r b e n t  i n  d i r e c t  
r e l a t i o n  t o  t h e i r  p o l a r i z a b i l i t y .  T h i s  has  been  con- 
f i rmed e x p e r i m e n t a l l y  for  alumina a t  room t e m p e r a t u r e  

and above.25 
g a s - s o l i d  i n t e r a c t i o n s  has  been sugges t ed .  

- 

The a p p l i c a b i l i t y  of  t h e  t h e o r y  t o  o t h e r  
2 5  
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OKAMURA AND SAWYER 

A tes t  of t h e  King and Benson theory  a s  it r e l a t e s  
t o  sa l t -modi f ied  aluminas and s i l i c a s  has been under- 
taken t o  d e f i n e  more f u l l y  t h e  c o n t r o l l i n g  f a c t o r s  i n  
gas-sol id  chromatography.26 
p o l a r i z a b i l i t y  f o r  t h e  i n e r t  gases ,  oxygen, and methane 
on a 10% sodium-chloride coa ted  column of acid-washed 
H-151 alumina y i e l d s  a s t r a i g h t  l i n e .  P l o t s  f o r  o t h e r  
salt-modif i e d  alumina columns have t h e  same genera l  
appearance. The d a t a  i n d i c a t e  a d i r e c t  c o r r e l a t i o n  a t  
t h r e e  d i f f e r e n t  temperatures,  which is i n  accord with 
t h e  theory of King and B e n ~ o n . ~ ~  
l i n e s  because of i t s  s p e c i f i c  i n t e r a c t i o n  d u e  t o  t h e  
t r i p l e  bond: t h e  d e v i a t i o n  i n c r e a s e s  as t h e  temperature  
is reduced t o  g ive  an increased i n t e r a c t i o n .  

T 

T A p l o t  of l o g  &,- E. - 

Nitrogen is above t h e  

The c h a r a c t e r i s t i c s  of t h e  s a l t - c o a t e d  P o r a s i l  
columns a r e  i l l u s t r a t e d  by a p l o t  of l o g  Xs- x. 
p o l a r i z a b i l i t y  f o r  a 10% NaC1-coated column, which 
g ives  a s t r a i g h t  l i n e  f o r  argon (oxygen and n i t r o g e n ) ,  
krypton, and xenon: methane is of f  t h e  l i n e .  This  a l s o  
i s  t r u e  f o r  pre l iminary  s t u d i e s  on a g r a p h i t i z e d  carbon 
(Graphon) column. Thus, methane e x h i b i t s  less i n t e r -  
a c t i o n  than it should according t o  t h e  theory  of King 
and Benson. 24 

These results i n d i c a t e  t h a t  t h e  i n e r t  gases  a r e  
adsorbed i n  a fash ion  t h a t  i s  c o n s i s t e n t  with t h e  King- 
Benson theory.24 However, t h e  adsorp t ion  of methane on 
P o r a s i l  appears t o  be an exception t o  t h e i r  theory.  T o  

fit  methane onto t h e  s t r a i g h t  l i n e  f o r  A r ,  K r ,  and X e  
would r e q u i r e  t h a t  it have a p o l a r i z a b i l i t y  of 24.0 x 

c m ,  which is s i g n i f i c a n t l y  below t h e  measured 
va lue  of 26.0 x c m .  One way to  expla in  t h i s  
anomaly is t o  c h a r a c t e r i z e  t h e  s u r f a c e  i n t e r a c t i o n  by an 
" e f f e c t i v e  p o l a r i z a b i l i t y . "  The l a t t e r  r e p r e s e n t s  t h e  
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GAS-SOLID CHROMATOGRAPHY 

p o l a r i z a b i l i t y  of a molecule i n  r e l a t i o n  t o  t h e  s u r f a c e  
t o  which t h e  m o l e c u l e  is adsorbed. 
chromatographic da ta  provide  a means of eva lua t ing  s w h a  
q u a n t i t y .  The diminished i n t e r a c t i o n  of methane impl ies  
t h a t  t h e  a c i d i c  s u r f a c e  of Porasi12'  exerts a r e p u l s i v e  
f o r c e  t o  t h e  hydrogen atoms of methane t o  g i v e  an 

28 
" e f f e c t i v e  p o l a r i z a b i l i t y "  which is less than i t s  
measured p o l a r i z a b i l i t y .  The b a s i c  s u r f a c e  of aluminas 
does not  e x e r t  such a r e p u l s i v e  f o r c e ,  and t h e r e f o r e  

t h e  " e f f e c t i v e  p o l a r i z a b i l i t y "  of methane on salt-modi- 
f i e d  aluminas i s  equal  t o  i t s  p o l a r i z a b i l i t y .  The i n e r t  
gases  have no a c i d i c  o r  b a s i c  c h a r a c t e r  and t h e r e f o r e  
t h e i r  " e f f e c t i v e  p o l a r i z a b i l i t y "  always is equal  to  
t h e i r  p o l a r i z a b i l i t y .  Graphon has  a s l i g h t l y  a c i d i c  
surface2'  and pre l iminary  experiments i n d i c a t e  t h a t  
methane's " e f f e c t i v e  p o l a r i z a b i l i t y "  on Graphon is 24.6 

x c m .  Therefore,  methane is repulsed less by t h e  
Graphon s u r f a c e  than t h e  more a c i d i c  P o r a s i l  s u r f a c e .  
The concept of " e f f e c t i v e  p o l a r i z a b i l i t y "  a l lows one t o  
descr ibe  t h e  i n t e r a c t i o n  of methane wi th  t h e  a c i d i c  s u r -  
f a c e  of P o r a s i l  and Graphon and st i l l  be c o n s i s t e n t  wi th  
t h e  b a s i c  ideas  of t h e  King and Benson theory.  Thus, 
t h e  nonspec i f ic  i n t e r a c t i o n  of s o r b a t e  molecules wi th  
sal t -modif ied aluminas and P o r a s i l s  can be descr ibed  
q u a n t i t a t i v e l y  a s  t h e  f r e e  energy of adsorp t ion  due t o  
t h e  " e f f e c t i v e  p o l a r i z a b i l i t y "  of a molecule on t h e  
sur face .  

Thus, gas-so l id  

Another study2' has i l l u s t r a t e d  t h e  r e l a t i o n s h i p  
between t h e  logari thm of t h e  c a p a c i t y  f a c t o r  and t h e  
molar r e f r a c t i o n  f o r  normal a lkanes .  Molar r e f r a c t i o n  
is  r e l a t e d  t o  p o l a r i z a b i l i t y  by a c o n s t a n t  and is a 
q u a n t i t y  t h a t  i s  more r e a d i l y  a v a i l a b l e  from t h e  l i t e r a -  
t u r e  f o r  organic  compounds. F igure  8 g i v e s  t h e  v a r i a -  

443 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
2
6
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



0- AND SAWYER 

I .  

0. 

\ 
Y 

c3 
0 
J 

-0.  

I I I I 

/ 
/ 

o 4 O M e  / 
/ 

/ 

I 1 I 1 

25 35 45  5 5  

MOLAR REFRACTION, cm3/mo~e 

FIGURE 8 

Logarithms of c a p a c i t y  f a c t o r s ,  k', f o r  a series of 
hydrocarbons E. their  molar r e f r a c t i o n s  using a 10% w t /  
w t  Na S04-modified P o r a s i l  C(100-120 mesh) column a t  
200 08. 

t i o n  of t h e  logarithm of t h e  c a p a c i t y  f a c t o r ,  k', with  
t h e  room-temperature molar r e f r a c t i o n ,  R, f o r  s e v e r a l  
groups of organic  compounds. The s t r a i g h t  l i n e s  t h a t  
a r e  obtained f o r  methyl-subst i tuted benzenes and normal 
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GAS-SOLID CHROMATOGRAPHY 

p a r a f f i n s  imply t h a t  f o r  t h e s e  e s s e n t i a l l y  nonpo la r  
compound groups  t h e  f r e e  ene rgy  of  t h e  a d s o r p t i o n  is a 

l i n e a r  f u n c t i o n  of t h e  p o l a r i z a b i l i t y .  Again, t h e  
s e p a r a t i o n  between t h e  t w o  l i n e s  a p p e a r s  t o  be due t o  
d i f f e r e n c e s  i n  d e g r e e s  of  s p e c i f i c  i n t e r a c t i o n .  

The d e v i a t i o n  of  many o f  t h e  s u b s t i t u t e d  benzenes  

from t h e  l i n e  d e f i n e d  by  t h e  methyl  benzenes  i n d i c a t e  
t h e  e lectron withdrawing or d o n a t i n g  e f f e c t s  of  t h e  
s u b s t i t u e n t  groups  a l s o  a r e  impor t an t .  The d i p o l e  

moment may p l a y  a p a r t ,  b u t  i f  t h e  p i - e l e c t r o n  d e n s i t y  
h o l d s  t h e  compound approximate ly  p a r a l l e l  t o  t h e  
s u r f a c e  then  t h e  a n g l e  f o r  d i p o l e - d i p o l e  i n t e r a c t i o n s  
is n o t  f a v o r a b l e  . 

A r e l a t i o n s h i p  between a romat i c  e l e c t r o n  d e n s i t y  
and a d s o r p t i v e  i n t e r a c t i o n  is  a p p a r e n t  from t h e  d a t a  

f o r  s i l i z a n e d  P o r a s i l  (Table  X I I ) .  On t h i s  column t h e  
0 free ene rgy  c o n t r i b u t i o n  is z e r o  a t  500 K and TTar  oma t i c  

t h e  cp-Alk f r e e  energy  c o n t r i b u t i o n  p e r  s u b s t i t u e n t  
carbon is equa l  t o  t h e  CH c o n t r i b u t i o n .  The re fo re ,  o n l y  

t h e  r i n g  ca rbons  and s u b s t i t u e n t  atoms c o n t r i b u t e  t o  t h e  
f r e e  ene rgy  of a d s o r p t i o n ;  t h e  a romat i c  system does  n o t  

c o n t r i b u t e .  Because t h e  f r e e  ene rgy  of a d s o r p t i o n  on 
unmodif ied P o r a s i l  C i n c l u d e s  c o n t r i b u t i o n s  from t h e  
a romat i c  system, t h e  d i f f e r e n c e  i n  f r e e  e n e r g i e s  be- 

tween unmodified and s i l i z a n e d  P o r a s i l  C shou ld  p r o v i d e  
a measure of  a romat i c  e l e c t r o n  d e n s i t y .  T h i s  i s  i l l u s -  
t r a t e d  b y  F i g u r e  9,  which i s  a Hammett p l o t  r e l a t i n g  

a romat i c  e l e c t r o n  d e n s i t y  w i t h  d i f f e r e n c e s  of  f r e e  
e n e r g i e s .  The q u a n t i t y  u is p r o p o r t i o n a l  t o  a romat i c  

E 
p e l e c t r o n  d e n s i t y  because  of a p a r a  s u b s t i t u e n t ,  w h i l e  

aI is p r o p o r t i o n a l  to t h e  i n d u c t i v e  component of a r o -  
matic e l e c t r o n  d e n s i t y  f o r  such a s ~ b s t i t u e n t . ~ '  The 
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OKAMURA AND SAWYER 

I 

0.25i / F  

-0.50 
0.50 6 o.26 

-0.25 0.00 

FIGURE 9 

Hammett p l o t  of  A l o g  ['to] E. up and aI 

- K ,  s u b s t i t u e n t  d i s t r i b u t i o n  c o n s t a n t  on P o r a s i l  C ;  &, 
s u b s t i t u e n t  d i s t r i b u t i o n  c o n s t a n t  on s i l i z a n e d  P o r a s i l  C 
0 p a r a  s u b s t i t u e n t  c o n s t a n t :  aI, i n d u c t i v e  c o n t r i b u -  e' t i o n  t o  s u b s t i t u e n t  c o n s t a n t .  - 

- - 

f r e e  energy  d i f f e r e n c e s  a r e  r e l a t e d  t o  t h e  r e l a t i v e  
d i s t r i b u t i o n  c o n s t a n t s  b y  t h e  e x p r e s s i o n  

where K is  t h e  d i s t r i b u t i o n  c o n s t a n t  on P o r a s i l  C ,  I$ 
t h e  d i s t r i b u t i o n  c o n s t a n t  on s i l i z a n e d  P o r a s i l  C,  a n 3  

A[A(-qG_)]  t h e  f r e e  ene rgy  d i f f e r e n c e  betwen u n s i l i z a n e d  
and s i l i z a n e d  P o r a s i l  C .  
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GAS-SOLID CHROMATOGRAPHY 

The c o r r e l a t i o n  is much bet ter  when a I  va lues  a r e  
used, which implies  t h a t  induct ive  effects-are  more 
important than resonance e f f e c t s  f o r  a d s o r p t i v e  i n t e r -  
a c t i o n s .  The c o r r e l a t i o n s  a r e  q u i t e  good, e s p e c i a l l y  

i n  view of t h e  assumption t h a t  t h e  i n t e r a c t i o n s  of t h e  
aromatic s u b s t i t u e n t s  a r e  i d e n t i c a l  on both s i l i z a n e d  
and uns i l izaned  s u r f a c e s .  Furthermore, t h e  CJ values  
a r e  f o r  d i s u b s t i t u t e d  molecules while  t h e  gas  chromato- 
graphic d a t a  a r e  f o r  monosubsti tuted systems. Other 
s p e c i f i c  i n t e r a c t i o n s  which have been t a b u l a t e d  a r e  
those  o l e f i n i c  bonds (see f o r  example Table 111). An 

i n t e r e s t i n g  p o i n t  i s  t h e  l a r g e  d i f f e r e n c e s  observed f o r  
such bonds i n  var ious  environments. Nonconj ugated, 

conjugated, and aromatic pi-electron systems have s i g n i -  
f i c a n t l y  d i f f e r e n t  s p e c i f i c  e n t h a l p i e s  and e n t r o p i e s .  
I s o l a t i o n  of t h e s e  s p e c i f i c  q u a n t i t i e s  makes it p o s s i b l e  
t o  a s c e r t a i n  how a given molecular p i - e l e c t r o n  system 
i n t e r a c t s  with an adsorbent and t h e r e f o r e  provides  da ta  
about t h e  molecular conf igura t ion  and i t s  o r i e n t a t i o n  
with r e s p e c t  to  t h e  a d s o r p t i v e  s u r f a c e .  15 

Extensive d a t a  a r e  a v a i l a b l e  concerning t h e  s t r u c -  
t u r e  of t h e  s a t u r a t e d  and unsaturated c y c l i c  hydro- 

carbons from cyclopentane through c y c l o o c t a t e t r a e n e  
(COT) .  With t h e  except ion of benzene, s t u d i e s  of t h e  

adsorpt ion f o r  most of t h e s e  compounds have been l i m i t e d  
t o  g r a p h i t i z e d  carbon.31 Because t h e  adsorp t ion  of COT 

and i t s  r e l a t e d  compounds (as  w e l l  a s  of  t h e  C 7 ,  C6, 
and C5 c y c l i c  hydrocarbons) had n o t  been s tudied ,  a 
d e t a i l e d  chromatographic i n v e s t i g a t i o n  of t h e i r  r e t e n -  
t i o n  i n  r e l a t i o n  t o  known s t r u c t u r e s  has been made. 1 5  

The s t ruc tu re  of COT has been a subject  of contro-  

versy  because spec t roscopic  d a t a  support  bo th  crown and 
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OKAMURA AND SAWYER 

t u b  L a t e r  work t e n d s  t o  s u p p o r t  t h e  l a t t e r  

c o n f ~ r m a t i o n ~ ~  w i t h  t h e  t u b  r a p i d l y  i n v e r t i n g  and p a s s -  
i n g  through a p l a n a r  i n t e r m e d i a t e .  3 7 t 3 8  

form, t h e  double  bonds,  w h i l e  f o r m a l l y  con juga ted ,  have 
a lmos t  no o v e r l a p  because  a d j a c e n t  bonds a r e  skewed. 
Hence, t h e s e  bonds shou ld  e x h i b i t  a d s o r p t i o n  i n t e r a c -  
t i o n s  c h a r a c t e r i s t i c  o f  i s o l a t e d  double  bonds i f  t h e  
adsorbed conformat ion  resembles t h a t  found i n  t h e  vapor  
phase .  Chromatographic measurements made on COT and 
r e l a t e d  hydrocarbons should  p r o v i d e  ev idence  f o r  t h e  

more p r o b a b l e  c o n f i g u r a t i o n  i n  t h e  adsorbed  s t a t e .  A 
comparison o f  e n t h a l p y  and e n t r o p y  d a t a  f o r  t h e  adsorp-  
t i o n  of  c y c l o a l k a n e s  and normal a l k a n e s  a l s o  shou ld  p ro -  

v i d e  a d d i t i o n a l  s t r u c t u r a l  c o r r e l a t i o n s .  

I n  t h e  t u b  

The r e t e n t i o n  volumes, &, of  s e v e r a l  homologous 
series of  c y c l i c  hydrocarbons-on a P o r a s i l  C column a r e  
i l l u s t r a t e d  i n  F i g u r e  10.  

l i n e a r l y  t o  t h e  f r e e  energy  of a d s o r p t i o n ,  t h e  d a t a  
i n d i c a t e  t h a t  b o t h  l i n e a r  and c y c l i c  a l k a n e s ,  a s  w e l l  a s  
t h e  c y c l i c  a l k e n e s ,  i n c r e a s e  l i n e a r l y  i n  f r e e  energy  o f  
a d s o r p t i o n  w i t h  t h e  number of methylene groups  i n  t h e  
molecule. The v e r t i c a l  d i s t a n c e  between any t w o  p o i n t s  

on t h e  p l o t  i s  l i n e a r l y  r e l a t e d  t o  t h e  d i f f e r e n c e  i n  
f r e e  energy  between t h e  two compounds. 

Because l o g  IR is  r e l a t e d  

An impor tan t  o b s e r v a t i o n  i s  t h a t  t h e  e n t h a l p i e s  
and e n t r o p i e s  of i n t e r a c t i o n  f o r  1 ,3 -cyc looc tad iene  a r e  
o n l y  s l i g h t l y  l a r g e r  t han  t h o s e  f o r  cyc looc tene ,  w h i l e  
t h o s e  f o r  t h e  1,5- isomer a r e  t w o  t o  t h r e e  and one-half  
times a s  l a r g e  a s  f o r  t h e  mono-olef in .  T o  a lesser 
degree  a s i m i l a r  p r e f e r e n t i a l  s e t  of i n t e r a c t i o n s  is 
observed f o r  t h e  1,4- isomer r e l a t i v e  t o  t h e  1,3- isomer 
of cyc lohexadiene .  Furthermore,  l t 3 , 5 , 7 - c y c l o o c t a -  
t e t r a e n e  has  e n t h a l p i e s  and e n t r o p i e s  of i n t e r a c t i o n  

t h a t  are s m a l l e r  t han  f o r  t h e  1,5- isomer o f  c y c l o o c t a -  
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GAS-SOLID CHROMATOGRAPHY 
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FIGURE 10  

Logari thm of  r e t e n t i o n  volumes E. carbon number f o r  
normal a l k a n e s  (&), c y c l i c  a l k a n e s  (g), c y c l i c  mono- 
a l k e n e s  (c) ,  and r e l a t e d  compounds a s  i n d i c a t e d  on a 10% 
Na2S04-Porasil C column a t  225 OC. 

d i e n e  on t h e  P o r a s i l  C column, and approx ima te ly  t h e  
same a s  t h e  d i e n e  on t h e  alumina column. The i n t e r -  
a c t i o n s  of l 8 3 , 5 - c y c 1 o h e p t a t r i e n e  a r e  a lmos t  i d e n t i c a l  
t o  t h o s e  f o r  t h e  C8- te t raene  and q u i t e  s i m i l a r  t o  t h o s e  
f o r  benzene .  
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0- AND SAWYER 

Thus, geometr ic  and s ter ic  f a c t o r s  govern t h e  
e x t e n t  t o  which t h e  o l e f i n i c  p i  o r b i t a l s  can i n t e r a c t  
w i t h  t h e  adso rben t ,  e s p e c i a l l y  i n  t h e  case of t h e  
NaZS04-Porasil C column. 
t h e  1 ,3 -d iene  isomer h a s  a geometry such t h a t  essen-  
t i a l l y  o n l y  one  p i  bond can  i n t e r a c t ;  i n  c o n t r a s t ,  t h e  

1 ,5-d iene  i somer ' s  c o n f i g u r a t i o n  is s u f f i c i e n t l y  i d e a l -  

i z e d  t h a t  i ts t w o  p i  bonds i n t e r a c t  more than  t h r e e  
t i m e s  a s  e x t e n s i v e l y  a s  t h e  p i  bond o f  c y c l o o c t e n e  and 

t o  t h e  same degree  a s  t h e  t e t r a e n e .  T h i s  l a t t e r  con- 
s i d e r a t i o n  i m p l i e s  t h a t  o n l y  t h e  1 , 5 - p i  bonds of  t h e  
t e t r a e n e  a r e  i n  an o r i e n t a t i o n  t h a t  p e r m i t s  i n t e r a c t i o n  
w i t h  t h e  a d s o r b e n t .  Another  i n t e r e s t i n g  p o i n t  is  t h a t  
t h e  p i - o r b i t a l  i n t e r a c t i o n  of 1 8 3 , 5 - c y c l o h e p t a t r i e n e  
i s  t h e  same a s  t h a t  f o r  c y c l o o c t a t e t r a e n e ;  t h i s  is 
r e a s o n a b l e  i n  t h a t  t h e  g a s  phase  c o n f i g u r a t i o n  f o r  t h e  
1 , 3 , 5 - t r i e n e  p o r t i o n  o f  t h e  t w o  molecules i s  i d e n t i -  
c a l .  36t 39 

hexadienes  i n d i c a t e  t h a t  t h e  1,4- isomer i n t e r a c t s  abou t  
t w i c e  a s  e x t e n s i v e l y  a s  cyclohexene,  whereas t h e  1 , 3 -  
isomer has  a geometry t h a t  c a u s e s  t h e  i n t e r a c t i o n  t o  be 

one and one-half  t i m e s  a s  g r e a t .  

I n  t h e  c a s e  of  t h e  C8 o l e f i n s  

The thermodynamic pa rame te r s  f o r  t h e  c y c l o -  

Cons ide ra t ion  o f  t h e  geomet r i c  e f f e c t s  on i n t e r -  
a c t i o n  i n d i c a t e s  t h a t  t h e  p i  o r b i t a l s  m u s t  be pe rpend i -  
c u l a r  t o  t h e  a d s o r b e n t  s u r f a c e  f o r  maximum i n t e r a c t i o n .  
Thus, t h e  p i  bonds of  1 ,5 -cyc looc tad iene  and 1 ,4-cyc lo-  
hexadiene  a r e  p a r a l l e l  and i n  a c o n f i g u r a t i o n  t h a t  
a l l o w s  them t o  l i e  on a p l a n e .  Likewise,  t h e  1 , 5 - p i  

bond5 of  c y c l o o c t a t e t r a e n e  and of 1 8 3 , 5 - c y c l o h e p t a t r i e n e  
a r e  p a r a l l e l  t o  a l l o w  maximum i n t e r a c t i o n .  Molecular  

models i n d i c a t e  t h a t  t h e  3- and 7-p i  bonds i n  t h e s e  t w o  
molecules  a r e  comple t e ly  o u t  of t h e  p l a n e  f o r  t h e  1,5- 
p i  bonds and t h e r e f o r e  canno t  i n t e r a c t  e f f e c t i v e l y  w i t h  
t h e  s u r f a c e .  
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GAS -S OLID CHROMATOGRAPHY 

Molecular  and S t r u c t u r a l  Pa rame te r s .  The e a r l y  

s tudies  by o u r  group l e f t  unanswered q u e s t i o n s  concern-  
i n g  s p e c i f i c  e f f e c t s  d u e  t o  ha logens  and d i p o l e  moments. 

For  example, i n  t h e  c a s e  of  a l i p h a t i c  compounds on 
porous  s i l i c a ,  anomal ies  occur f o r  t h e  s p e c i f i c  carbon 
c o n t r i b u t i o n  when t h e  carbon s u b s t i t u e n t s  a r e  v a r i e d .  

At tempts  t o  p r e d i c t  t h e  s p e c i f i c  r e t e n t i o n  volumes o f  
m u l t i - s u b s t i t u t e d  molecules  a l s o  f a i l  when t h e  s p e c i f i c  
thermodynamic pa rame te r s  f o r  ha logens  a r e  used. Conse- 

quen t ly ,  a more r i g o r o u s  e v a l u a t i o n  of a d s o r p t i o n  i n  
t e r m s  of  t h e  molecu la r  pa rame te r s  of  t h e  s o r b a t e  became 

necessa ry .  

19 

The c o n t r i b u t i o n  of a m o l e c u l e ' s  molar  r e f r a c t i o n ,  
d i p o l e  moment, and nonbonding e l e c t r o n s  t o  s p e c i f i c  
i n t e r a c t i o n s  w i t h  t h e  a d s o r b e n t  has  been  t h e  subjec t  of  
a d e t a i l e d  i n v e s t i g a t i o n  .40 

Graphon, 10% Na2S04 on acid-washed F-1 a lumina ,  and 10% 
Na2S04 on porous  s i l i c a  ( P o r a s i l  C ) ;  hydrocarbons  and 
ha logena ted  methanes w e r e  used a s  t h e  s o r b a t e  molecu le s .  
By r e l a t i n g  a d s o r p t i v e  i n t e r a c t i o n s  t o  molecu la r  p a r a -  
meters, t h e  s p e c i f i c  r e t e n t i o n  volumes of  o t h e r  compourrb 
can be p r e d i c t e d .  I n  c a s e s  where t h e  molecu la r  p a r a -  
meters change w i t h  changes i n  conformat ion ,  t h e  c o n f o r -  

mat ion of t h e  adsorbed  molecule  can be d i s c e r n e d .  T h i s  
approach t o  t h e  thermodynamics of  a d s o r p t i o n  a l s o  p ro -  

v i d e  a means o f  s t u d y i n g  t h e  n a t u r e  of  a d s o r b e n t  
s u r f a c e s .  

The a d s o r b e n t s  i n c l u d e d  

The c o e f f i c i e n t s  of t h e  t h r e e  molecu la r  p a r a m e t e r s  
(molar r e f r a c t i o n ,  d i p o l e  moment, and s p e c i f i c  ha logen  
e f f e c t s )  , i n  t e r m s  o f  a d s o r p t i o n  thermodynamics, have 
been  o b t a i n e d  b y  a n a l y z i n g  t h e  r e t e n t i o n  volume d a t a  f o r  
a se t  of model compounds w i t h  a l e a s t  s q u a r e s  program 
t r a n s l a t e d  i n t o  APL and r u n  on an IBM 3 6 0 / 5 0  computer .  
These c o e f f i c i e n t s  a r e  summarized i n  Tab le  XV A .  The 
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GAS-SOLID CHROMATOGRAPHY 

compounds, t h e i r  molar  r e f r a c t i o n s  (g) , d i p o l e  moments 
( p )  , t h e  number of  s p e c i f i c  c h l o r i n e  i n t e r a c t i o n s ,  and 
t h e  c a l c u l a t e d  -&Io and -as_” v a l u e s  i n  comparison t o  
t h o s e  o b t a i n e d  e x p e r i m e n t a l l y  a r e  summarized i n  
T a b l e  XV B. 

Experiments  w i t h  t h e  P o r a s i l  C column f o r  m u l t i -  
ha logena ted  e t h a n e s ,  p ropanes ,  and l o n g e r  carbon c h a i n s  
y i e l d  s a t i s f a c t o r y  agreement  between t h e  experimental 
v a l u e s  and t h o s e  p r e d i c t e d  from t h e  c o e f f i c i e n t s  i n  
Tab le  XV i n  a l l  c a s e s  e x c e p t  where t h e  d i p o l e  moment is 
s t r o n g l y  dependent  on molecu la r  conformat ion .  I n  t h o s e  
c a s e s ,  t h e  c a l c u l a t e d  r e t e n t i o n  volumes a r e  l o w .  

C a l c u l a t i o n s  f o r  a l t e r n a t i v e  conformers  i n d i c a t e  
t h a t  t h e  ene rgy  ga ined  from t h e  i n c r e a s e d  i n t e r a c t i o n  
o f  t h e  un favorab le  conformer is  g r e a t e r  t han  t h e  ene rgy  
d i f f e r e n c e  between t h e  f a v o r a b l e  and un favorab le  con- 
formers. An i l l u s t r a t i v e  example is 1 ,2 -d ich lo roe thane .  
A t  412 OK i n  t h e  gaseous  phase ,  i t s  d i p o l e  moment is 
1.46 D, which f o r  t h e  P o r a s i l  column g i v e s  c a l c u l a t e d  
v a l u e s  f o r  -&Jo of  9.43 k c a l s  and f o r  -&O of  17.05 
cals-degree-’. 
volume a t  400 % of  10.0 m l .  
a r e  -&O, 10.60 k c a l s ,  and -e0, 17.98 cals-degree-’, 
and a r e t e n t i o n  volume of  25.6 m l .  However, b y  assuming 
t h a t  t h e  molecule a d s o r b s  on t h e  s u r f a c e  a s  t h e  gauche 
conformer ( F i g u r e  11) new v a l u e s  are  o b t a i n e d  f o r  t h e  
d i p o l e  i n t e r a c t i o n .  

These q u a n t i t i e s  p r e d i c t  a r e t e n t i o n  
The expe r imen ta l  results 

Because C l ( 1 )  is approx ima te ly  40° from pe rpend i -  
cu la r  w i t h  t h e  s u r f a c e ,  i t s  d i p o l e  i n t e r a c t i o n  is 1 .43  D 

(1.87 D x cos 40°) . C l ( 2 )  is  a b o u t  60° from p e r p e n d i c u l a r  

t o  t h e  s u r f a c e  which g i v e s  a n  i n t e r a c t i o n  of 0.94 D 

(1.87 D x cos 60°) ; when added t o  C l ( 1 )  , t h i s  g i v e s  a 
t o t a l  d i p o l e  i n t e r a c t i o n  o f  2.37 D. I f  t h e  o r i g i n a l  g a s  
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0- AND SAWYER 

H 

FIGURE 11 

Proposed conformation f o r  1 ,2-dichloroethane when 
adsorbed on a P o r a s i l  C sur face .  

phase d i p o l e  of 1.46 D is replaced with t h i s  number and 

t h e  gauche C1-C1 r e p u l s i v e  i n t e r a c t i o n  of 1.1 k ~ a l s ~ ~  is 
subt rac ted ,  t h e  resu l t  g i v e s  a -M0 value  of 10.27 
k c a l s .  S imi la r ly ,  a new c a l c u l a t e d  entropy is  obtained.  

However, because t h e r e  a r e  four  equiva len t  ways t h e  
gauche conformer can s i t  on t h e  sur face ,  a f a c t o r  of 
- R I n  4 (equal  t o  2.75) m u s t  be s u b t r a c t e d  t o  g i v e  a 

-e0 value  of 17.47 cals-degree-'. 
p r e d i c t  a r e t e n t i o n  volume of 22 .8  m l  a t  400 OK, which 

is i n  good agreement with t h e  experimental  value.  

These new va lues  

Examples of o ther  molecules which appear t o  undergo 
conformational change upon adsorp t ion  a r e  1,2-dichloro- 
propane, 1,1, 2-tr ichloroethane,  1 ,2 ,3- t r ich loropropane ,  
and l t3-dichloropropane.  This conclusion i s  based on 
models of a d s o r p t i v e  conformers which y i e l d  c a l c u l a t e d  

e n t h a l p i e s  and e n t r o p i e s  of adsorp t ion  i n  agreement 
with t h e  experimental  values .  
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GAS-SOLID CHROMATOGRAPHY 

T h e  m o s t  p r ac t i ca l  a s p e c t  of t h e  r e s u l t s  i s  t h e  
a b i l i t y  t o  pred ic t  r e t e n t i o n  v o l u m e s  on t h e  bas i s  of 

m o l e c u l a r  s t r u c t u r e  a f t e r  r u n n i n g  a s m a l l  series of 
m o d e l  c o m p o u n d s .  T a b l e  XVI gives t h e  pred ic ted  

loga r i thms  of t h e  corrected r e t e n t i o n  v o l u m e s  of a 
series of f u m i g a n t s  c o m p a r e d  t o  those f o u n d  e x p e r i m e n -  

t a l l y .  F i g u r e  12 i l l u s t r a t e s  t h e  r e s u l t i n g  chromato- 
g r a m .  A s i g n i f i c a n t  f a c t o r  i n  t h e  a c c u r a c y  of t h e  

predicted r e t e n t i o n  v o l u m e s  i s  t h e  u n c e r t a i n t y  of t h e  
v a l u e s  for t h e  m o l e c u l a r  p a r a m e t e r s .  Where t h e  u s e  of 
"e f fec t ive"  d i p o l e  m o m e n t s  i s  no ted ,  t h e  c o m p o u n d s  

6 

FIGURE 1 2  

G a s  c h r o m a t o g r a m  f o r  a series of f u m i g a n t s  on a 10% w t /  
w t  N a 2 S 0 4 - P o r a s i l  C c o l u m n  a t  1 2 5  C .  S a m p l e  c o m p o n e n t s :  

1, CH3C1; 2 ,CH2C12:  3, CC14;  4 ,CHC13;  5,  CC13CH3; 6 ,  
BrCH2CH2CH3; 7 ,  C1CH2CH2C1 : 
C1CH2CHC1CH3: 10, BrCH2(CH2)3CH3;  11, C12CHCHC12: 12, 
BrCH,CH,CH,Br . 

0 

8, B r C H 2  (CH2)  2CH3 ; 9 ,  

L L L  
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GAS-SOLID CHROMATOGRAPHY 

e i t h e r  conta in  bromine (which models i n d i c a t e  is forced 
about 35O from perpendicular  t o  t h e  s u r f a c e  because of 
i t s  l a r g e  s i z e )  o r  t h e  molecule r e q u i r e s  a conforma- 
t i o n a l  change i n  i t s  adsorbed s t a t e  (as  prev ious ly  exem- 
p l i f  i ed  by 1,2-dichloroethane)  . 

The converse a l s o  should be p o s s i b l e .  With t h e  
accumulation of enough d a t a  t o  pick t h e  best columns, 
t h e  s t r u c t u r e  of a compound could be determined by i t s  
r e t e n t i o n  on a series of columns. This should b e  feas-  
ib le  i n  gas-so l id  chromatography because of t h e  long 
t e r m  column s t a b i l i t y  r e l a t i v e  t o  gas- l iqu id  columns 

a s  w e l l  a s  t h e  g r e a t e r  e a s e  of r e p r o d u c i b i l i t y  when 
d u p l i c a t e  columns a r e  prepared.  

Surface Complexes. Another p o s s i b l e  type of 
s p e c i f i c  i n t e r a c t i o n  with salt-modif i e d  s u r f a c e s  is t h e  

formation of complexes with t h e  c o a t i n g  s a l t .  
Because previous  work43 has e s t a b l i s h e d  t h a t  t h e  s t a -  
b i l i t y  c o n s t a n t s  of weak charge- t ransfer  and hydrogen- 
bonded complexes can be evaluated from gas- l iqu id  chro- 

matographic measurements, a s i m i l a r  approach has b e e n  
used f o r  t h e  s tudy  of gas-sol id  complexes on s a l t -  
coated s i l i c a  g e l  and Graphon. A group of s u b s t i t u t e d  
aromatic molecules have been s tudied  a t  t h r e e  d i f f e r e n t  
temperatures i n  t e r m s  of t h e i r  i n t e r a c t i o n  with a LaC13 

c o a t i n g .  

18 

Because s a l t s  l i k e  LaC13 conta in  p a r t l y  f i l l e d  d o r  
€ s h e l l s  and a r e  s t r o n g  L e w i s  a c i d s ,  t h e y  should form 
complexes of varying s t r e n g t h  with e l e c t r o n  donor mole- 
c u l e s .  This adds another  column parameter t h a t  may be 
v a r i e d  t o  achieve more s e l e c t i v e  a n a l y t i c a l  s e p a r a t i o n s .  

Considerat ion of t h e  da ta  i n  Figure 1 3  i n d i c a t e s  
t h a t  t h e  i n t e r a c t i o n s  of aromatic molecules a r e  s i g n i -  
f i c a n t l y  g r e a t e r  when LaC13 is p r e s e n t  on t h e  s i l i c a  
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3 0 -  

BENZENE 

FLUORORENZENE 

2 0  

I - HEKENE 
k! +- I 0  

- ,fl 

HEXANE 

u - L - - L -  1 - 1  

4 0  6 0  8 0  
0 0  

2 0  

(La  CI, CONC ) x 1 0 '  MOLES - m-' 

FIGURE 1 3  

S p e c i f i c  r e t e n t i o n  volumes f o r  a series of compounds 
a s  a f u n c t i o n  of  t h e  s u r f a c e  c o n c e n t r a t i o n  of  Lac1 on 
s i l i c a  g e l  a t  200 OC. NaCl used a s  t h e  d i l u e n t ;  a h  
columns c o a t e d  w i t h  10% by we igh t  of s a l t  (NaC1 and/or  
LaC13).  
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GAS-SOLID CHROMATOGRAPHY 

g e l  s u r f a c e .  The l i n e a r  s lopes  of t h e  curves  of 
F igure  1 3  a l s o  imply t h a t  t h e  s p e c i f i c  i n t e r a c t i o n s  a r e  
d i r e c t l y  p r o p o r t i o n a l  t o  t h e  s u r f a c e  concent ra t ion  of 

LaC13, a condi t ion  i n d i c a t i v e  of complex formation. 
S tudies  of complex formation i n  gas- l iqu id  

have shown t h a t  t h e  s t a b i l i t y  c o n s t a n t s  of 
t h e  r e s u l t i n g  complexes can be evaluated by t h e  
expression 

K R R  = K '(1 + KIC) (12) 

0 where ER and KR 
s o l v a t e w i t h  acomplexing  s o l u t i o n  and an i n e r t  
so lvent ,  r e s p e c t i v e l y ,  K is t h e  s t a b i l i t y  c o n s t a n t  of -1 
t h e  complex, and C is  t h e  concent ra t ion  of l i g a n d  i n  t h e  
s o l u t i o n .  This same expression is a p p r o p r i a t e  f o r  t h e  
present  gas-sol id  s t u d i e s ,  b u t  w i t h  K and KR repre-  
sen t ing  t h e  p a r t i t i o n  c o e f f i c i e n t s  of-an adsorba te  on a 

mixed LaC13-NaC1 column and a NaCl column, r e s p e c t i v e l y .  
For t h i s  system El r e p r e s e n t s  t h e  s t a b i l i t y  c o n s t a n t  of 
t h e  adsorbate-LaC13 complex and C is  t h e  s u r f a c e  concen- 

t r a t i o n  of LaC13 i n  t h e  mixed coa t ing  (mole m - 2 ) .  

Equation 1 2 ,  t h e  s t a b i l i t y  c o n s t a n t s  of t h e  LaC13- 

s u r f a c e  complexes can be evaluated;  t h e s e  a r e  summarized 
i n  Table X V I I .  By determining t h e  s t a b i l i t y  c o n s t a n t s  
a t  t h r e e  d i f f e r e n t  temperatures,  t h e  e n t h a l p i e s  of 
complex formation, -mf, can be evaluated from t h e  

s lopes  f o r  p l o t s  of 10: El E. l/z ( v a n ' t  Hoff p l o t s ) .  
The r e s u l t s  of such ana lyses  a l s o  a r e  summarized i n  
Table X V I I .  

a r e  t h e  p a r t i t i o n  c o e f f i c i e n t s  of a 

0 
-R 

when t h e  da ta  of Figure 1 3  a r e  analyzed by 

Considerat ion of t h e  d a t a  i n  Table X V I I  i n d i c a t e s  
19 t h a t  e lectron-donat ing s u b s t i t u e n t s  ( a l k y l  groups) 

enhance t h e  i n t e r a c t i o n  of t h e  aromatic  r i n g .  The mag- 

n i t u d e  of t h e  h e a t s  of complex formation, -mf, a l s o  - 
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OKAMURA AND SAWYER 

TABLE XVII 
S t a b i l i t y  Constants  and Heats of Formation 

of Aromatic-LaC13 Complexes 

S t a b i l i t y  c o n s t a n t  Enthalpy of complex 
E ~ ,  a t  200 OC formation,. -ef, a t  

200 OC (Kcal-mole-’) (m2 - m o l  e-l) 

Benzene 
Toluene 
Ethylbenzene 
1 sop ropy1 ben Zen e 
Fluorobenzene 
Chlorobenzene 
Bromoben zene 
Iodobenzene 
1-Hexene 

2.09 x l o 5  
4.37 x l o 5  
5.06 x l o 5  
4.43 x l o 5  
3.00 x l o 5  
2.17 x l o 5  
2.84 x l o 5  
2.75 x l o 5  
1.62 x l o 5  

3.6 

4.8 

4.8 

4.5 

4.6 

2.8 

3.1 

6.6 

... 

a r e  c o n s i s t e n t  with t h e  formation of metal-aromatic 
complexes. I n  c o n t r a s t ,  t h e r e  appears  t o  be no s p e c i f i c  
i n t e r a c t i o n  between hexane and LaC13 and only  a s l i g h t l y  
enhanced i n t e r a c t i o n  with 1-hexene. Thus, t h e  h e a t  of 

adsorp t ion  f o r  benzene on LaC13-coated s i l i c a  g e l  is 
increased 5 k c a l  over i t s  va lue  on NaC1-coated s i l i c a  
g e l  while  t h e  h e a t  of adsorp t ion  f o r  hexane is less  on 
LaC13 than on NaC1. 

Thermal Act iva t ion  of S i l i c a .  The n a t u r e  of 
s p e c i f i c  i n t e r a c t i o n s  a l s o  y i e l d s  information about  t h e  
s u r f a c e  of an adsorbent  and how t h a t  s u r f a c e  changes 
with thermal and chemical pre t rea tment .  Because t h e  
groups p r e s e n t  a t  t h e  s u r f a c e  of an adsorbent  a r e  h ighly  
dependent on i t s  thermal and chemical pre t rea tment ,  
i n v e s t i g a t i o n s  of t h e  adsorp t ion  thermodynamics of s a l t -  
modified s i l i c a  g e l  and porous s i l i c a  beads provide  
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GAS-SOLID CHROMATOGRAPHY 

i n s i g h t  t o  t h e  n a t u r e  of t h e  a c t i v e  s i tes  a t  t h e  adsor-  
b e n t  s u r f a c e  and t h e  adsorp t ion  processes .  The thermo- 
dynamic s t u d i e s  a l s o  provide  a b a s i s  f o r  opt imizing 
column a c t i v a t i o n  temperatures  f o r  d i f f i c u l t  a n a l y t i c a l  
s e p a r a t i o n s .  

A series of s u b s t i t u t e d  hydrocarbons have been 
chromatographed on each column a t  t h r e e  d i f f e r e n t  t e m -  
p e r a t u r e s  .17 The r e s u l t i n g  r e t e n t i o n  volume d a t a ,  ITR, 

have been used t o  p r e p a r e  p l o t s  of l o g  yR s. l/z, 
which permit  eva lua t ion  of t h e  contributTons made by t h e  
var ious adsorba te  f u n c t i o n a l  groups t o  t h e  enthalpy,  
entropy, and f r e e  energy of adsorp t ion .  Such c a l c u l a -  
t i o n s  have been made f o r  each adsorbent  a c t i v a t i o n  t e m -  
p e r a t u r e .  F igure  14 i n d i c a t e s  t h e  v a r i a t i o n  of t h e  
var ious  f u n c t i o n a l  group c o n t r i b u t i o n s  t o  t h e  d i f f e r e n -  
t i a l  f r e e  energy of adsorp t ion ,  A(-&), with changing 
a c t i v a t i o n  temperature  of t h e  s i l i c a  g e l .  The smooth- 
n e s s  of t h e  curves  is  impressive; furthermore,  t h e  450 
and 550 OC d a t a  (Figure 14)  a r e  f o r  measurements t h a t  
w e r e  made a f t e r  a l l  t h e  o t h e r  eva lua t ions .  S c h u l t z e  
and S ~ h m i d t - K u s t e r ~ ~  obtained a curve s i m i l a r  t o  t h e  
te rmina l  rr-bond curve of Figure 1 4  when they  p l o t t e d  t h e  
d i f f e r e n c e  be tween t h e  logari thms of t h e  r e t e n t i o n  
volumes of e thylene  and ethane E. t h e  adsorbent  a c t i v a -  
t i o n  temperature  f o r  a high s u r f a c e  a r e a  s i l i c a .  The 
minima f o r  t h e  two curves occur a t  s i m i l a r  a c t i v a t i o n  
temperatures  and a r e  of s i m i l a r  depth.  

va t ion  temperature i s  an important parameter in  column 
prepara t ion  and can be u s e d  t o  improve t h e  s e p a r a t i o n  of 
a d i f f i c u l t  mixture.  This is  i l l u s t r a t e d  by t h e  chroma- 
tograms i n  Figure 15 .  Separa t ion  of t h e  m i x t u r e s  is n o t  
p o s s i b l e  a t  adsorbent  a c t i v a t i o n  temperatures  of 400 o r  

- 

From an a n a l y t i c a l  s tandpoin t ,  t h e  adsorbent  a c t i -  
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I , 
4,3 f 6 c-OCTANE 

I 1 1 I I I 
I I 

I 
3 

V 

500°C Ac+& 

I 1 
t I 1 I 1 I 

400°C Act 

100 80 60 40 20 0 
TIME, SEC. 

FIGURE 15  

G a s  chromatograms f o r  six-component mixture  w i t h  10% 
NaC1-silica g e l  column a c t i v a t e d  a t  t h r g e  d i f f e r e n t  
temperatures .  Column temperature,  2 2 5  C .  
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0- AND SAWYER 

600 OC, b u t  a t  an  i n t e r m e d i a t e  a c t i v a t i o n  t e m p e r a t u r e  of  
500 OC r e a s o n a b l e  r e s o l u t i o n  is ach ieved .  

The d a t a  of F i g u r e  14  a l s o  p e r m i t  some c o n c ~ u s i o n s  , 
t o  be made abou t  t h e  n a t u r e  o f  t h e  s u r f a c e  of t h e  adsor -  
b e n t  and how it changes w i t h  the rma l  a c t i v a t i o n .  Thus, 
a d s o r p t i o n  of  molecu la r  wa te r  induces  an enhanced d i p o l e  

i n  t h e  wa te r  molecule and weakened 0-H bonds,  which 
a c t  a s  s u r f a c e  p r o t o n  c e n t e r s :  t h e  s i z e  of t h e  d i p o l e  
set u p  i n  t h e  0-H bond depends on how t i g h t l y  t h e  
unshared e l e c t r o n  p a i r  is h e l d  by  t h e  i n n e r  o r b i t a l  of  
t h e  s i l i c o n .  The l a t t e r  is a f f e c t e d  by  t h e  n a t u r e  and 
number of  t h e  f u n c t i o n a l  groups  a t t a c h e d  t o  t h e  s i l i c o n .  
Thus, dehydra t ion  and chemica l  m o d i f i c a t i o n  of  t h e  
s u r f a c e  should  change t h e  c o o r d i n a t i o n  u n s a t u r a t i o n  o f  
t h e  s u r f a c e  atoms and, consequen t ly ,  t h e i r  a c i d  s t r eng th .  

C o n s i d e r a t i o n  o f  t h e s e  arguments ,  i n f r a r e d  d a t a ,  
and a d s o r p t i o n  d a t a  l e a d s  t o  t h e  c o n c l u s i o n  t h a t  t h e  
s u r f a c e  of  t h e  s i l i c a  g e l  is covered  i n i t i a l l y  b y  
c o n s i d e r a b l e  amounts of molecular  wa te r  bonded t o  
s u r f a c e  s i l i c o n  atoms (B) and s u r f a c e  hydroxyl  groups:  
some free hydroxyl  groups  (5) a l s o  a re  p r e s e n t .  Such a 
s i l i c a  g e l  s u r f a c e  is i l l u s t r a t e d  b y  F i g u r e  1 6 .  On 
r a i s i n g  t h e  t empera tu re  o f  a c t i v a t i o n  t o  200 C most o f  
t h e  hydrogen-bonded wa te r  a p p e a r s  t o  be removed w i t h  
hydrogen bonds (C) forming between f a v o r a b l y  p l a c e d  
s i n g l e  hydroxyls ,  a s  shown i n  F i g u r e  17 .  F u r t h e r  
h e a t i n g  t o  500 OC probab ly  removes a l l  hydrogen-bonded 
wa te r  and m o s t  o f  t h e  c o o r d i n a t e d  wa te r  molecules, and 
i n c r e a s e s  hydrogen bonding  between hydroxy l s .  A t  600 OC 
t h e  hydrogen-bonded hydroxyls  appea r  t o  condense  t o  form 
s u r f a c e  s i l o x a n e  l i n k a g e s  w i t h  a few s i n g l e  hydroxy l s  
s t i l l  p r e s e n t .  
remainder  o f  t h e  f r e e  hydroxy l s ,  b u t  p r i m a r i l y  c a u s e s  a 
d e c r e a s e  i n  t h e  s u r f a c e  a r e a .  

0 

Heat ing  above 700 OC may remove t h e  
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GAS-SOLID CKROMATOGRAPHY 

H 
‘H 

..O’ 

FIGURE 16  

S u r f a c e  of s i l i c a  g e l  p r i o r  t o  a c t i v a t i o n .  

On narrow p o r e  s i l i cas ,  most of t h e  hydroxyls  are 
p r e s e n t  a s  r e a c t i v e  hydroxyls  (C, F i g u r e  17 )  and t h u s  
occur i n  groups  of t w o  or more, which can  i n t e r a c t  w i t h  
each  of t h e  carbon atoms or doub le  bonds of an  unsa tu r -  
a t e d  hydrocarbon.  
t i o n  of a l k y l  benzenes  and, t o  a lesser e x t e n t ,  ha lo -  

Such groups  a l s o  c a u s e  s t r o n g  adso rp -  

FIGURE 1 7  

S u r f a c e  of s i l i c a  ge l  a f t e r  a c t i v a t i o n  a t  200 O C .  
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OKAMURA AND SAWYER 

benzenes  ( d u e  t o  t h e  e l e c t r o n  withdrawing e f f e c t  o f  t h e  
ha logen  a tom) .  Halobenzenes on t h e  o t h e r  hand shou ld  be 

s t r o n g l y  adsorbed  a t  t h e  p r o t o n  c e n t e r s  (I3, F i g u r e  1 7 )  
produced by  t h e  c o o r d i n a t e d  wa te r  molecules ,  because o f  
t h e  h i g h e r  e l e c t r o n  d e n s i t y  a t  t h e  halogen atoms. 
L i t t l e ,  i f  any, a d s o r p t i o n  w i l l  t a k e  p l a c e  a t  t h e  s i n g l e  
hydrokyls  (A, F i g u r e  16) w h i l e  o t h e r  more a c t i v e  p r o t o n  
c e n t e r s  a r e  a v a i l a b l e .  

A s  t h e  a c t i v a t i o n  t empera tu re  of t h e  s i l i c a  g e l  is 
r a i s e d  from 200 t o  500 OC, type (E3) si tes  d i s a p p e a r  and 
type (C) sites a r e  formed. Thus, ha lobenzenes  e x h i b i t  
s l i g h t l y  reduced i n t e r a c t i o n s  a t  500 OC, whereas  a l k y l  
benzenes  a r e  adsorbed more s t r o n g l y .  F u r t h e r  i n c r e a s e  
i n  t h e  a c t i v a t i o n  t empera tu re  c a u s e s  type (C) si tes  t o  
d i s a p p e a r  and t h e  i n t e r a c t i o n  o f  b o t h  a l k y l  and ha lo -  
benzenes  w i t h  t h e  s u r f a c e  t o  be reduced  d r a s t i c a l l y .  

A l l  t h e  a d s o r b e n t s  used i n  t h i s  work have been  
c o a t e d  w i t h  NaC1, which a p p e a r s  t o  a c t  a s  a conduc t ing  
l a y e r  ove r  t h e  s u r f a c e  o f  t h e  a d s o r b e n t  and t h e r e b y  
a t t e n u a t e  t h e  p e r t u r b a t i o n s  and f o r c e s  due t o  t h e  
v a r i o u s  a d s o r p t i o n  si tes.  

Water Modi f i ca t ion  o f  Adsorbents .  A f i n a l  t o p i c  
o f  recent  i n t e r e s t  can  be d e s c r i b e d  a s  water-modif ied 
g a s - s o l i d  chromatography. Such a sys tem is e s p e c i a l l y  
i n t e r e s t i n g  i n  t e r m s  of mixed a d s o r p t i o n  and a b s o r p t i o n  
mechanisms. 

The e x i s t e n c e  o f  a d s o r p t i o n  on a l i q u i d  s u r f a c e  a s  
w e l l  a s  a b s o r p t i o n  b y  t h e  l i q u i d  was f i r s t  shown b y  
Martin*’ i n  a series o f  g a s  chromatographic  exper iments  
The b e h a v i o r  of  even more complex sets of  r e t e n t i o n  
mechanisms h a s  been d i s c u s s e d  s i n c e  then  b y  P u r n e l l  
and U r ~ n e . * ~  when a d s o r p t i o n  on t h e  l i q u i d  s u r f a c e  and 
a b s o r p t i o n  by  t h e  l i q u i d  a r e  t h e  predominant  i n t e r -  

46 
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GAS-SOLID CHROMATOGRAPHY 

a c t i o n s ,  t h e  r e t e n t i o n  volume i s  governed by t h e  

r e l a t i o n  

V gs  T = K A ~ A L + K L ~ V L  (13) 

where EA is t h e  equi l ibr ium cons tan t  f o r  adsorp t ion  on 
t h e  l i q u i d  s u r f a c e  (with u n i t s  of m l / m  ),  & t h e  s u r -  

2 f a c e  a r e a  of t h e  l i q u i d  (m /g d r y  suppor t ) ,  EL t h e  
equi l ibr ium c o n s t a n t  f o r  absorp t ion  by t h e  l i z u i d  l a y e r  
( m l / m l  of l i q u i d ) ,  and EL t h e  volume of t h e  l i q u i d  

phase ( m l  of l iqu id /g  d r y  s u p p o r t ) .  

2 
- 

Typical  curves  of r e t e n t i o n  volume E. water 
conten t  f o r  organic  compounds on wetted P o r a s i l  C a r e  
i l l u s t r a t e d  i n  F igure  18. A l l  compounds show an 
i n c r e a s e  i n  r e t e n t i o n  with decreas ing  water conten t .  

w t / w t ,  H20/dry  Porasil C 

FIGURE 18 

S p e c i f i c  r e t e n t i o n  volumes of organic  compounds a s  a 
func t ion  of t h e  water  conten t  of P o r a s i l  C. 
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OKAMURA AND SAWYER 

Also, t h e  o r d e r  of r e t e n t i o n  o f  t h e  compounds changes 
d r a s t i c a l l y  w i t h  wa te r  c o n t e n t .  F i g u r e  1 9  i l l u s t r a t e s  
r e t e n t i o n  c u r v e s  E. wate r  c o n t e n t  f o r  o r g a n i c  compounds 
on Chromosorb W. These a r e  t h e  same compounds t h a t  a r e  
i l l u s t r a t e d  i n  F i g u r e  18. I n  c o n t r a s t  w i t h  t h e  P o r a s i l  
d a t a  all of t h e  compounds except t h e  a l k a n e s  e x h i b i t  a 
d e c r e a s e  i n  r e t e n t i o n  w i t h  d e c r e a s i n g  w a t e r  conten t .  
The r e t e n t i o n  o r d e r  o f  t h e  halomethanes does  n o t  change 
u n t i l  t h e  wa te r  c o n t e n t  i s  less t h a n  0.1 w t / w t w a t e r /  
d r y  s u p p o r t ,  

aL, and yL, a l e a s t  s q u a r e s  f i t  has  been  u s e d  t o  

adsorbed on-Porasi i  C i n  t h e  r e g i o n  of 0.363 t o  0,755 

T Using e x p e r i m e n t a l l y  de te rmined  v a l u e s  f o r  b-, 

and EL for compounds sorbed by wate r  

FIGURE 1 9  

S p e c i f i c  r e t e n t i o n  volumes of  o r g a n i c  compounds a s  a 
f u n c t i o n  o f  t h e  wa te r  c o n t e n t  of  Chromosorb W. 
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GAS-SOLID CHROMATOGRAPHY 

w t / w t  water /dry  P o r a s i l  C .  

P o r a s i l  C which meets t h e  c r i t e r i a  f o r  a c c u r a t e  e s t ima-  
t i o n  of t h e  s u r f a c e  a r e a .  The d a t a  a r e  summarized i n  
Tab le  XVIII A. The s t a n d a r d  d e v i a t i o n  ave rages  a b o u t  
2% of t h e  & values,  abou t  5% of t h e  Zr, v a l u e s  f o r  t h e  

normal a l k a n e s .  These  v a l u e s  a g r e e  wiFhin expe r imen ta l  
error w i t h  t h e  v a l u e s  o b t a i n e d  on P o r a s i l  B w e t t e d  w i t h  
0.40 t o  0.57 w t / w t  H2O/ d r y  P o r a s i l  B. 

This  is t h e  r e g i o n  f o r  

Tab le  XVIII B c o n t a i n s  t h e  EL v a l u e s  t h a t  a r e  ob- 
T t a i n e d  b y  u s i n g  a l e a s t  s q u a r e s  f i t  on t h e  k- d a t a  

f o r  Chromosorb W i n  t h e  region from 0.101 t o  1.40 w t /  
w t  H20/dry Chromosorb W. Because t h e  l i q u i d  s u r f a c e  
a r e a  is  t o o  small t o  be measured d i r e c t l y  it i s  p r e -  
sumed t o  be p r o p o r t i o n a l  t o  t h e  r e t e n t i o n  of t h e  normal 

a l k a n e s .  

ave rage  less t h a n  2% o f  t h e i r  magni tude.  

v a l u e s  of a l k a n e s  on P o r a s i l  C t o  d e f i n e  t h e  s u r f a c e  

a r e a  y i e l d s  t h e  v a l u e s  o f  t h e  halomethanes on Chromo- 
s o r b  W. However, because  t h e  e f f e c t  i s  so  s m a l l  ( t h e  
s u r f a c e  a r e a  r a n g e s  from 0.4 t o  0.9 m /g), t h e  s t a n d a r d  

d e v i a t i o n s  ave rage  more t h a n  50% of t h e  EA v a l u e s  and 

t h e r e f o r e  t h e  l a t t e r  a r e  n o t  r e p o r t e d .  

pounds absorbed b y  w a t e r  adsorbed on P o r a s i l  C compared 
t o  t h o s e  found us ing  t h e  water-Chromosorb W sys tem a r e  

t o o  l a r g e  t o  be exp la ined  b y  expe r imen ta l  e r r o r ,  
e s p e c i a l l y  f o r  CHC13 and CC14. 

t h a t  t h e  wa te r  on P o r a s i l  B and C is mod i f i ed  b y  t h e  
adso rben t .  The mechanism of t h i s  m o d i f i c a t i o n  has  n o t  
been  e s t a b l i s h e d ,  b u t  t h e r e  a r e  two r e a s o n a b l e  i n t e r p r e -  

t a t i o n s .  E i t h e r  t h e  wa te r  is b e i n g  o r i e n t e d  by  t h e  

s i l i c a  s u r f a c e  o r  t h e  s i l i c a  s u r f a c e  is being p a r t i a l l y  
d i s s o l v e d  b y  t h e  w a t e r .  The l a t t e r  has  been  proposed  t o  

The I& v a l u e s  have  s t a n d a r d  d e v i a t i o n s  which 

Using t h e  $ - 

- 
2 

- 

The d i f f e r e n c e s  found i n  t h e  EL v a l u e s  f o r  com- 

The d i f f e r e n c e  i m p l i e s  
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OKAMLJRA AND SAWYER 

TABLE XVIII 

Adsorpt ion  and Absorp t ion  E q u i l i b r i u m  C o n s t a n t s  f o r  

Compounds Sorbed b y  Water on P o r a s i l  C and on 
Chromosorb W a t  25.0 OC 

A.  P o r a s i l  C 

XA EL - C omp o und - 
cHF3 
CH3C1 

CH3Br 

CH2C12 

CHC13 

CC14 

c4  
c5  

c7 
‘6 

‘8 

0.0234 
0.0708 
0.114 
0.332 
0.580 

0.280 
0.0420 
0.0936 
0.216 

0.501 
1 . 1 7  

B .  Chromosorb W 
CH3C1 --- 
CH3Br --- 
CH2C12 

CHC13 

CC14 

0.28 

3.1 
4.8 

1 2 . 7  

9.9 
2.1 
--- 
0.27 

0.73 
1.8 

4.2 

2.50 
3.65 
9.58 
5.79 
0.467 

e x p l a i n  t h e  fo rma t ion  of  anomalous wa te r .  48 
t a t i o n  argument i s  f avored  by  t h e  f a c t  t h a t  t h e  modi- 
f i e d  K v a l u e s  appea r  t o  occur  a t  s u r f a c e  a r e a s  g r e a t e r  

t han  l-m2/g8 i.~., where f o r c e s  e x i s t  which c a u s e  t h e  
wa te r  s u r f a c e  t o  conform t o  t h e  s u p p o r t  s u r f a c e .  T h a t  
t h e  d i s s o l u t i o n  of  s i l i c a  a l s o  i s  a p o s s i b i l i t y  is  

The o r i e n -  

-L 
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GAS-SOLID CHROMATOGRAPHY 

shown by  t h e  f a c t  t h a t  s u r f a c e  a r e a s  o f  t h e  d r y  
P o r a s i l s  ( a s  measured b y  t h e  BET method) changed a f t e r  
b e i n g  t r e a t e d  w i t h  wa te r .  

The one d e f i n i t e  c o n c l u s i o n  from a comparison of  

t h e  d a t a  f o r  P o r a s i l  w i t h  t h a t  f o r  Chromosorb W is  t h a t  
extreme c a r e  i n  t h e  s e l e c t i o n  of  t h e  s u p p o r t  m a t e r i a l  
is n e c e s s a r y  i f  a l i q u i d  is t o  be c h a r a c t e r i z e d  a s  a 
bu lk  l i q u i d .  
l i q u i d  c o a t i n g s  on S p h e r o s i l  ( t h e  European name f o r  
P o r a s i l )  t o  be best c h a r a c t e r i z e d  a s  a form o f  modi f ied  

g a s - s o l i d  chromatography. They a l so  n o t e  t h a t  t h e  

the rma l  s t a b i l i t y  of t h e  modi f ied  s u p p o r t s  is much 
h i g h e r  t han  t h a t  normal ly  a s s o c i a t e d  w i t h  t h e  c o a t i n g  

l i q u i d ,  which, t h e y  contend ,  p r o v e s  t h a t  bonding be tween 
t h e  l i q u i d  l a y e r  and t h e  s i l i c a  s u r f a c e  i s  p a r t i c u l a r l y  
s t r o n g  . 

Indeed Gui l lemin ,  e t  a l .  , 49 c o n s i d e r  

C ONC LUS I O N S  

The g o a l  o f  t h e  p r e s e n t  d i s c u s s i o n  has  been  t o  

r e v i v e  and s t i m u l a t e  in te res t  i n  g a s - s o l i d  chromato- 

graphy.  By t h e  u s e  o f  s e n s i t i v e  d e t e c t o r s  and s u r f a c e  
m o d i f i c a t i o n  o f  a d s o r b e n t s  h i g h l y  s e l e c t i v e  and ef  f i c i -  
e n t  s e p a r a t i o n s  a r e  p o s s i b l e .  N o t  o n l y  does  t h e  selec- 
t i v i t y  of g a s - s o l i d  chromatography s u r p a s s  t h a t  of  gas-  
l i q u i d  chromatography, it a l so  p r o v i d e s  a more r a t i o n a l  

and q u a n t i t a t i v e  b a s i s  f o r  t h e  p r e d i c t i o n  of  r e t e n t i o n  
volumes. 

The u s e  of s u r f a c e  m o d i f i c a t i o n  p r o v i d e s  a conveni -  

e n t  means o f  a t t a i n i n g  a more homogeneous s u r f a c e .  A l s q  
because  o f  s p e c i f i c  i n t e r a c t i o n s  w i t h  t h e  c o a t i n g  s a l t ,  
a d d i t i o n a l  s e l e c t i v i t y  is ga ined  b y  a p p r o p r i a t e  c h o i c e  

of t h e  c o a t i n g  s a l t .  Th i s  is  ana logous  t o  s e l e c t i v e  
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OKAMURA AND SAWYER 

l i q u i d  phases i n  gas  l i q u i d  chromatography, b u t  has t h e  
added advantage t h a t  t h e r e  a r e  no "bleeding" problems. 

The u t i l i t y  of gas-sol id  chromatography extends 

beyond a n a l y t i c a l  chemistry.  As t h e  preceding s e c t i o n s  

have i l l u s t r a t e d ,  it can be a convenient mea,ns f o r  

s tudying t h e  p h y s i c a l  and chemical p r o p e r t i e s  of 

s u r f a c e s ,  gas-so l id  i n t e r a c t i o n s ,  and gas-sol id  inor-  

ganic  complexes. This l e a d s  t o  t h e  conclusion t h a t  gas- 
s o l i d  chromatography should be an e s p e c i a l l y  e f f e c t i v e  

method f o r  c h a r a c t e r i z i n g  c a t a l y s t s  and o t h e r  s o l i d -  

s t a t e  m a t e r i a l s .  Another recent extension has been a 

s tudy  of t h e  i n t e r a c t i o n s  of halogenated hydrocarbons 
(used a s  fumigants) with s o i l s  .50 
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